13,079 research outputs found
Recommended from our members
The use of sequencing information in software specification for verification
Software requirements specifications, virtual machine definitions, and algorithmic design all place constraints on the sequence of operations that are permissible during a program's execution. This paper discusses how these constraints can be captured and used to aid in the program verification process. The sequencing constraints can be expressed as a grammar over the alphabet of program operations. Several techniques can be used in support of testing or verification based on these specifications. Dynamic aalysis and static analysis are considered here. The automatic generation of some of these aids is feasible; the means of doing so is described
Phase Diagram for Quantum Hall Bilayers at
We present a phase diagram for a double quantum well bilayer electron gas in
the quantum Hall regime at total filling factor , based on exact
numerical calculations of the topological Chern number matrix and the
(inter-layer) superfluid density. We find three phases: a quantized Hall state
with pseudo-spin superfluidity, a quantized Hall state with pseudo-spin
``gauge-glass'' order, and a decoupled composite Fermi liquid. Comparison with
experiments provides a consistent explanation of the observed quantum Hall
plateau, Hall drag plateau and vanishing Hall drag resistance, as well as the
zero-bias conductance peak effect, and suggests some interesting points to
pursue experimentally.Comment: 4 pages with 4 figure
Effect of Correlated Lateral Geniculate Nucleus Firing Rates on Predictions for Monocular Eye Closure Versus Monocular Retinal Inactivation
Monocular deprivation experiments can be used to distinguish between different ideas concerning properties of cortical synaptic plasticity. Monocular deprivation by lid suture causes a rapid disconnection of the deprived eye connected to cortical neurons whereas total inactivation of the deprived eye produces much less of an ocular dominance shift. In order to understand these results one needs to know how lid suture and retinal inactivation affect neurons in the lateral geniculate nucleus (LGN) that provide the cortical input. Recent experimental results by Linden et al. showed that monocular lid suture and monocular inactivation do not change the mean firing rates of LGN neurons but that lid suture reduces correlations between adjacent neurons whereas monocular inactivation leads to correlated firing. These, somewhat surprising, results contradict assumptions that have been made to explain the outcomes of different monocular deprivation protocols. Based on these experimental results we modify our assumptions about inputs to cortex during different deprivation protocols and show their implications when combined with different cortical plasticity rules. Using theoretical analysis, random matrix theory and simulations we show that high levels of correlations reduce the ocular dominance shift in learning rules that depend on homosynaptic depression (i.e., Bienenstock-Cooper-Munro type rules), consistent with experimental results, but have the opposite effect in rules that depend on heterosynaptic depression (i.e., Hebbian/principal component analysis type rules)
- …