7,000 research outputs found

    Theory of Pump Depletion and Spike Formation in Stimulated Raman Scattering

    Full text link
    By using the inverse spectral transform, the SRS equations are solved and the explicit output data is given for arbitrary laser pump and Stokes seed profiles injected on a vacuum of optical phonons. For long duration laser pulses, this solution is modified such as to take into account the damping rate of the optical phonon wave. This model is used to interprete the experiments of Druhl, Wenzel and Carlsten (Phys. Rev. Lett., (1983) vol. 51, p. 1171), in particular the creation of a spike of (anomalous) pump radiation. The related nonlinear Fourier spectrum does not contain discrete eigenvalue, hence this Raman spike is not a soliton.Comment: LaTex file, includes two figures in LaTex format, 9 page

    Aspects of Horava-Lifshitz cosmology

    Full text link
    We review some general aspects of Horava-Lifshitz cosmology. Formulating it in its basic version, we extract the cosmological equations and we use observational data in order to constrain the parameters of the theory. Through a phase-space analysis we extract the late-time stable solutions, and we show that eternal expansion, and bouncing and cyclic behavior can arise naturally. Concerning the effective dark energy sector we show that it can describe the phantom phase without the use of a phantom field. However, performing a detailed perturbation analysis, we see that Horava-Lifshitz gravity in its basic version suffers from instabilities. Therefore, suitable generalizations are required in order for this novel theory to be a candidate for the description of nature.Comment: 10 pages, 4 figures, invited talk given at the 2nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Assymetry, National Tsing Hua University, Hsinchu, Taiwan, November 5-6, 201

    Formation and evolution of clumpy tidal tails around globular clusters

    Full text link
    We present some results of numerical simulations of a globular cluster orbiting in the central region of a triaxial galaxy on a set of 'loop' orbits. Tails start forming after about a quarter of the globular cluster orbital period and develop, in most cases, along the cluster orbit, showing clumpy substructures as observed, for example, in Palomar 5. If completely detectable, clumps can contain about 7,000 solar masses each, i.e. about 10% of the cluster mass at that epoch. The morphology of tails and clumps and the kinematical properties of stars in the tails are studied and compared with available observational data. Our finding is that the stellar velocity dispersion tends to level off at large radii, in agreement to that found for M15 and Omega Centauri.Comment: LaTeX 2e, uses AASTeX v5.x, 40 pages with 18 figures. Submitted to The Astronomical Journa

    The Fermi Problem in Discrete Systems

    Full text link
    The Fermi two-atom problem illustrates an apparent causality violation in Quantum Field Theory which has to do with the nature of the built in correlations in the vacuum. It has been a constant subject of theoretical debate and discussions during the last few decades. Nevertheless, although the issues at hand could in principle be tested experimentally, the smallness of such apparent violations of causality in Quantum Electrodynamics prevented the observation of the predicted effect. In the present paper we show that the problem can be simulated within the framework of discrete systems that can be manifested, for instance, by trapped atoms in optical lattices or trapped ions. Unlike the original continuum case, the causal structure is no longer sharp. Nevertheless, as we show, it is possible to distinguish between "trivial" effects due to "direct" causality violations, and the effects associated with Fermi's problem, even in such discrete settings. The ability to control externally the strength of the atom-field interactions, enables us also to study both the original Fermi problem with "bare atoms", as well as correction in the scenario that involves "dressed" atoms. Finally, we show that in principle, the Fermi effect can be detected using trapped ions.Comment: Second version - minor change

    The use of BIM technology in teaching related to Architecture: cooperative and collaborative learning based on real Projects between different subjects

    Get PDF
    In this article, it is presented the experience of the Educational Innovation Project accepted by the Basque Country University, which is being developed since 2014 at the Polytechnic University School in Donostia. This project highlights for being the first teaching experience in the Technical Architecture Degree, where teams of teachers from different subjects are developing a work in a cooperative, joint, coordinated and collaborative way, and encompassing the full spectrum of the design - construction process closely with the architecture professional dynamics. BIM technology (Building Information Modeling) is being used so that the same three-dimensional parametric modeling is shared among different subjects, for the resolution of real Learning Based Projects, linking teaching and labor market.En esta comunicación, se presenta la experiencia del Proyecto de Innovación Educativa aceptado por la Universidad del País Vasco, que se está desarrollando desde 2014 en la Escuela Universitaria Politécnica de Donostia. Destaca por ser la primera experiencia docente en el Grado en Arquitectura Técnica, donde equipos docentes de diversas materias están desarrollando un trabajo de manera cooperativa, conjunta, coordinada y colaborativa, abarcando el espectro completo del proceso proyectual-constructivo en estrecha relación con la dinámica profesional Arquitectónica. Se está empleando la tecnología BIM, (Building Information Modeling) de manera que se comparte un mismo modelado tridimensional paramétrico entre diferentes asignaturas, para la resolución del Aprendizaje Basado en Proyectos reales, enlazando docencia y mercado laboral

    From Heisenberg matrix mechanics to EBK quantization: theory and first applications

    Full text link
    Despite the seminal connection between classical multiply-periodic motion and Heisenberg matrix mechanics and the massive amount of work done on the associated problem of semiclassical (EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a quantum variational principle that implies the classical variational principle for invariant tori. We also expose the more indirect connection between commutation relations and quantization of action variables. With the help of several standard models with one or two degrees of freedom, we then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.

    Long-term variability of the optical spectra of NGC 4151: II. Evolution of the broad Ha and Hb emission-line profiles

    Full text link
    Results of the long-term (11 years, from 1996 to 2006) Hα\alpha and Hβ\beta line variations of the active galactic nucleus of NGC 4151 are presented. High quality spectra (S/N>50 and R~8A) of Hα\alpha and Hβ\beta were investigated. We analyzed line profile variations during monitoring period. Comparing the line profiles of Hα\alpha and Hβ\beta, we studied different details (bumps, absorption features) in the line profiles. The variations of the different Hα\alpha and Hβ\beta line profile segments have been investigated. Also, we analyzed the Balmer decrement for whole line and for line segments. We found that the line profiles were strongly changing during the monitoring period, showing blue and red asymmetries. This indicates a complex BLR geometry of NGC 4151 with, at least, three kinematically distinct regions: one that contributes to the blue line wing, one to the line core and one to the red line wing. Such variation can be caused by an accelerating outflow starting very close to the black hole, where the red part may come from the region {closer to the black hole than the blue part, which is coming} from the region having the highest outflow velocities. Taking into account the fact that the BLR of NGC 4151 has a complex geometry (probably affected by an outflow) and that a portion of the broad line emission seems to have not a pure photoionization origin, one can ask the question whether the study of the BLR by reverberation mapping may be valid in the case of this galaxy.Comment: 24 pages, 18 figures, accepted for publications in A&

    Accelerated expansion from braneworld models with variable vacuum energy

    Full text link
    In braneworld models a variable vacuum energy may appear if the size of the extra dimension changes during the evolution of the universe. In this scenario the acceleration of the universe is related not only to the variation of the cosmological term, but also to the time evolution of GG and, possibly, to the variation of other fundamental "constants" as well. This is because the expansion rate of the extra dimension appears in different contexts, notably in expressions concerning the variation of rest mass and electric charge. We concentrate our attention on spatially-flat, homogeneous and isotropic, brane-universes where the matter density decreases as an inverse power of the scale factor, similar (but at different rate) to the power law in FRW-universes of general relativity. We show that these braneworld cosmologies are consistent with the observed accelerating universe and other observational requirements. In particular, GG becomes constant and Λ(4)const×H2\Lambda_{(4)} \approx const \times H^2 asymptotically in time. Another important feature is that the models contain no "adjustable" parameters. All the quantities, even the five-dimensional ones, can be evaluated by means of measurements in 4D. We provide precise constrains on the cosmological parameters and demonstrate that the "effective" equation of state of the universe can, in principle, be determined by measurements of the deceleration parameter alone. We give an explicit expression relating the density parameters Ωρ\Omega_{\rho}, ΩΛ\Omega_{\Lambda} and the deceleration parameter qq. These results constitute concrete predictions that may help in observations for an experimental/observational test of the model.Comment: References added, typos correcte

    Quantification of the early pupillary dilation kinetic to assess rod and cone activity.

    Get PDF
    Rods, cones and melanopsin contribute in various proportions, depending on the stimulus light, to the pupil light response. This study used a first derivative analysis to focus on the quantification of the dynamics of pupillary dilation that immediately follows light-induced pupilloconstriction in order to identify novel parameters that reflect rod and cone activity. In 18 healthy adults, the pupil response to a 1 s blue light stimulus ranging from - 6.0 to 2.65 log cd/m <sup>2</sup> in dark-adapted conditions and to a 1 s blue light stimulus (2.65 log cd/m <sup>2</sup> ) in light-adapted conditions was recorded on a customized pupillometer. Three derivative parameters which describe the 2.75 s following the light onset were quantified: dAMP (maximal amplitude of the positive peak), dLAT (latency of the positive peak), dAUC (area under the curve of the positive peak). We found that dAMP and dAUC but not dLAT have graded responses over a range of light intensities. The maximal positive value of dAMP, representing maximal rate of change of early pupillary dilation phase, occurs at - 1.0 log cd/m <sup>2</sup> and this stimulus intensity appears useful for activating rods and cones. From - 0.5 log cd/m <sup>2</sup> to brighter intensities dAMP and dAUC progressively decrease, reaching negligible values at 2.65 log cd/m <sup>2</sup> indicative of a melanopsin-driven pupil response that masks the contribution from rods and cones to the early phase of pupillary dilation

    Transition from decelerated to accelerated cosmic expansion in braneworld universes

    Full text link
    Braneworld theory provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Non-static extra dimensions can generally lead to a variable vacuum energy, which in turn may explain the present accelerated cosmic expansion. We concentrate our attention in models where the vacuum energy decreases as an inverse power law of the scale factor. These models agree with the observed accelerating universe, while fitting simultaneously the observational data for the density and deceleration parameter. The redshift at which the vacuum energy can start to dominate depends on the mass density of ordinary matter. For Omega = 0.3, the transition from decelerated to accelerated cosmic expansion occurs at z approx 0.48 +/- 0.20, which is compatible with SNe data. We set a lower bound on the deceleration parameter today, namely q > - 1 + 3 Omega/2, i.e., q > - 0.55 for Omega = 0.3. The future evolution of the universe crucially depends on the time when vacuum starts to dominate over ordinary matter. If it dominates only recently, at an epoch z < 0.64, then the universe is accelerating today and will continue that way forever. If vacuum dominates earlier, at z > 0.64, then the deceleration comes back and the universe recollapses at some point in the distant future. In the first case, quintessence and Cardassian expansion can be formally interpreted as the low energy limit of our model, although they are entirely different in philosophy. In the second case there is no correspondence between these models and ours.Comment: In V2 typos are corrected and one reference is added for section 1. To appear in General Relativity and Gravitatio
    corecore