16,246 research outputs found
A Neural Algorithm of Artistic Style
In fine art, especially painting, humans have mastered the skill to create
unique visual experiences through composing a complex interplay between the
content and style of an image. Thus far the algorithmic basis of this process
is unknown and there exists no artificial system with similar capabilities.
However, in other key areas of visual perception such as object and face
recognition near-human performance was recently demonstrated by a class of
biologically inspired vision models called Deep Neural Networks. Here we
introduce an artificial system based on a Deep Neural Network that creates
artistic images of high perceptual quality. The system uses neural
representations to separate and recombine content and style of arbitrary
images, providing a neural algorithm for the creation of artistic images.
Moreover, in light of the striking similarities between performance-optimised
artificial neural networks and biological vision, our work offers a path
forward to an algorithmic understanding of how humans create and perceive
artistic imagery
Exterior spacetime for stellar models in 5-dimensional Kaluza-Klein gravity
It is well-known that Birkhoff's theorem is no longer valid in theories with
more than four dimensions. Thus, in these theories the effective 4-dimensional
picture allows the existence of different possible, non-Schwarzschild,
scenarios for the description of the spacetime outside of a spherical star,
contrary to general relativity in 4D. We investigate the exterior spacetime of
a spherically symmetric star in the context of Kaluza-Klein gravity. We take a
well-known family of static spherically symmetric solutions of the Einstein
equations in an empty five-dimensional universe, and analyze possible stellar
exteriors that are conformal to the metric induced on four-dimensional
hypersurfaces orthogonal to the extra dimension. All these exteriors are
continuously matched with the interior of the star. Then, without making any
assumptions about the interior solution, we prove the following statement: the
condition that in the weak-field limit we recover the usual Newtonian physics
singles out an unique exterior. This exterior is "similar" to Scharzschild
vacuum in the sense that it has no effect on gravitational interactions.
However, it is more realistic because instead of being absolutely empty, it is
consistent with the existence of quantum zero-point fields. We also examine the
question of how would the deviation from the Schwarzschild vacuum exterior
affect the parameters of a neutron star. In the context of a model star of
uniform density, we show that the general relativity upper limit M/R < 4/9 is
significantly increased as we go away from the Schwarzschild vacuum exterior.
We find that, in principle, the compactness limit of a star can be larger than
1/2, without being a black hole. The generality of our approach is also
discussed.Comment: Typos corrected. Accepted for publication in Classical and Quantum
Gravit
Memristive excitable cellular automata
The memristor is a device whose resistance changes depending on the polarity
and magnitude of a voltage applied to the device's terminals. We design a
minimalistic model of a regular network of memristors using
structurally-dynamic cellular automata. Each cell gets info about states of its
closest neighbours via incoming links. A link can be one 'conductive' or
'non-conductive' states. States of every link are updated depending on states
of cells the link connects. Every cell of a memristive automaton takes three
states: resting, excited (analog of positive polarity) and refractory (analog
of negative polarity). A cell updates its state depending on states of its
closest neighbours which are connected to the cell via 'conductive' links. We
study behaviour of memristive automata in response to point-wise and spatially
extended perturbations, structure of localised excitations coupled with
topological defects, interfacial mobile excitations and growth of information
pathways.Comment: Accepted to Int J Bifurcation and Chaos (2011
Large tunable photonic band gaps in nanostructured doped semiconductors
A plasmonic nanostructure conceived with periodic layers of a doped
semiconductor and passive semiconductor is shown to generate spontaneously
surface plasmon polaritons thanks to its periodic nature. The nanostructure is
demonstrated to behave as an effective material modeled by a simple dielectric
function of ionic-crystal type, and possesses a fully tunable photonic band
gap, with widths exceeding 50%, in the region extending from mid-infra-red to
Tera-Hertz.Comment: 6 pages, 4 figures, publishe
- …