10,963 research outputs found

    Ultracold collisions of metastable helium atoms

    Get PDF
    We report scattering lengths for the singlet Sigma g +, triplet Sigma u + and quintet Sigma g + adiabatic molecular potentials relevant to collisions of two metastable (n=2 triplet S) helium atoms as a function of the uncertainty in these potentials. These scattering lengths are used to calculate experimentally observable scattering lengths, elastic cross sections and inelastic rates for any combination of states of the colliding atoms, at temperatures where the Wigner threshold approximation is valid.Comment: 20 pages, 8 figures, RevTeX, epsf. Small additions of tex

    Right eigenvalue equation in quaternionic quantum mechanics

    Full text link
    We study the right eigenvalue equation for quaternionic and complex linear matrix operators defined in n-dimensional quaternionic vector spaces. For quaternionic linear operators the eigenvalue spectrum consists of n complex values. For these operators we give a necessary and sufficient condition for the diagonalization of their quaternionic matrix representations. Our discussion is also extended to complex linear operators, whose spectrum is characterized by 2n complex eigenvalues. We show that a consistent analysis of the eigenvalue problem for complex linear operators requires the choice of a complex geometry in defining inner products. Finally, we introduce some examples of the left eigenvalue equations and highlight the main difficulties in their solution.Comment: 24 pages, AMS-Te

    Quaternionic Electroweak Theory

    Full text link
    We explicitly develop a quaternionic version of the electroweak theory, based on the local gauge group U(1,q)LU(1,c)YU(1, q)_{L}\mid U(1, c)_{Y}. The need of a complex projection for our Lagrangian and the physical significance of the anomalous scalar solutions are also discussed.Comment: 12 pages, Revtex, submitted to J. Phys.

    Quaternionic Electroweak Theory and CKM Matrix

    Get PDF
    We find in our quaternionic version of the electroweak theory an apparently hopeless problem: In going from complex to quaternions, the calculation of the real-valued parameters of the CKM matrix drastically changes. We aim to explain this quaternionic puzzle.Comment: 8, Revtex, Int. J. Theor. Phys. (to be published

    Quaternionic potentials in non-relativistic quantum mechanics

    Full text link
    We discuss the Schrodinger equation in presence of quaternionic potentials. The study is performed analytically as long as it proves possible, when not, we resort to numerical calculations. The results obtained could be useful to investigate an underlying quaternionic quantum dynamics in particle physics. Experimental tests and proposals to observe quaternionic quantum effects by neutron interferometry are briefly reviewed.Comment: 21 pages, 16 figures (ps), AMS-Te

    Transport through Zero-Dimensional States in a Quantum Dot

    Get PDF
    We have studied the electron transport through zero-dimensional (0D) states. 0D states are formed when one-dimensional edge channels are confined in a quantum dot. The quantum dot is defined in a two-dimensional electron gas with a split gate technique. To allow electronic transport, connection to the dot is arranged via two quantum point contacts, which have adjustable selective transmission properties for edge channels. The 0D states show up as pronounced oscillations in the conductance (up to 40% of e2/h), when the flux enclosed by the confined edge channel is varied, either by changing the magnetic field or the gate voltage. A prerequisite for the appearance of 0D states is that the transport through the entire device is adiabatic (i.e. with conservation of quantum numbers), which will be shown to occur at high magnetic field. The experimental results are in good agreement with theory and show that in the ballistic quantum Hall regime the current is carried entirely by edge channels.
    corecore