2,043 research outputs found

    Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum

    Full text link
    Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study therefore suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) to derive the height where flux becomes zero. It is shown that the standard deviations of all wind speed components (therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases where the vertical and horizontal heat fluxes are compensated. Turbulence above the wind-speed maximum is decoupled from the surface, and follows the classical local z-less predictions for stably stratified boundary layer.Comment: Manuscript submitted to Boundary-Layer Meteorology (05 December 2014

    Railway Rolling Stock Planning: Robustness Against Large Disruptions

    Get PDF
    In this paper we describe a two-stage optimization model for determining robust rolling stock circulations for passenger trains. Here robustness means that the rolling stock circulations can better deal with large disruptions of the railway system. The two-stage optimization model is formulated as a large mixed-integer linear programming (MILP) model. We first use Benders decomposition to determine optimal solutions for the LP-relaxation of this model. Then we use the cuts that were generated by the Benders decomposition for computing heuristic robust solutions for the two-stage optimization model. We call our method Benders heuristic. We evaluate our approach on the real-life rolling stock-planning problem of Netherlands Railways, the main operator of passenger trains in the Netherlands. The computational results show that, thanks to Benders decomposition, the LP-relaxation of the two-stage optimization problem can be solved in a short time for a representative number of disruption scenarios. In addition, they demonstrate that the robust rolling stoc

    Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis

    Get PDF
    Background The aim of the study was to better characterise the immunological origin and the behaviour of interleukin (IL)-23-responsive innate lymphoid cells (ILCs) in the gut, synovial fluid (SF) and bone marrow (BM) of patients with ankylosing spondylitis (AS).Methods ILC1, ILC2 and ILC3 cells were determined and characterised by confocal microscopy and flow cytometry in ileal and BM biopsies, in peripheral blood (PB) and SF mononuclear cells obtained from patients with AS and controls. Mucosal vascular addressin cell adhesion molecule 1 (MADCAM-1), IL-7, IL-15 and aggregates of lymphoid tissue inducer cells (LTi) were evaluated by immunohistochemistry. The in vitro ability of epithelial cells in driving the differentiation of ILC3 and the effect of tumour necrosis factor inhibitors (TNFi) on the frequency of ILC3 and the expression of MADCAM1 were also assessed.Results ILC3 characterised as Lyn(-)RORc(-)Tbet(+) NKp44(+) cells were significantly expanded in the gut, SF and BM of patients with AS compared with controls, produced high levels of IL-17 and IL-22 and expressed alpha 4 beta 7. MADcAM1 was overexpressed in BM and ileal high endothelial venules. IL-7 was significantly increased in AS gut, especially in the context of Paneth cells, and accompanied by the presence of aggregates of c-kit/IL-7R(+) cells (LTi). In in vitro experiments, epithelial cells from patients with AS actively induced differentiation of ILC3 from LTi. TNFi efficacy was accompanied by a significant decrease in the percentage of intestinal and circulating ILC3 and in the expression of MADCAM1.Conclusions Gut-derived IL-17(+) and IL-22(+) ILC3 are expanded in the peripheral blood, SF and inflamed BM of patients with AS, suggesting the presence of an active homing axis between the gut and the inflamed sacroiliac joints

    Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis

    Get PDF
    The present study is designed to assess if exosomes released from Chronic Myelogenous Leukemia (CML) cells may modulate angiogenesis. We have isolated and characterized the exosomes generated from LAMA84 CML cells and demonstrated that addition of exosomes to human vascular endothelial cells (HUVEC) induces an increase of both ICAM-1 and VCAM-1 cell adhesion molecules and interleukin-8 expression. The stimulation of cell-cell adhesion molecules was paralleled by a dose-dependent increase of adhesion of CML cells to a HUVEC monolayer. We further showed that the treatment with exosomes from CML cells caused an increase in endothelial cell motility accompanied by a loss of VE-cadherin and β-catenin from the endothelial cell surface. Functional characterization of exosomes isolated from CML patients confirmed the data obtained with exosomes derived from CML cell line. CML exosomes caused reorganization into tubes of HUVEC cells cultured on Matrigel. When added to Matrigel plugs in vivo, exosomes induced ingrowth of murine endothelial cells and vascularization of the Matrigel plugs. Our results suggest for the first time that exosomes released from CML cells directly affect endothelial cells modulating the process of neovascularization

    Survival of the ovine footrot pathogen Dichelobacter nodosus in different soils

    Get PDF
    Dichelobacter nodosus (D. nodosus) is the causative agent of footrot in sheep; one of the most important health and welfare issues of sheep worldwide. For control programmes to be effective, it is essential that the transmission cycle of D. nodosus is understood and bacterial reservoirs in the environment are better defined. This study evaluated the survival of D. nodosus in different soils using soil microcosms. Cultivation independent and dependent methods were used to detect D. nodosus over 40 days from seeding in soil. A D. nodosus specific probe was used for quantification by qPCR and viability was assessed by cell permeability to an intercalating dye, PMA, and by culture. Survival varied dramatically depending on soil type, matric potential (MP) and temperature. Our findings indicate that D. nodosus survival was higher at 5 °C compared with 25 °C in all soils and significantly longer at both temperatures in clay soil (>44% clay) compared with other soil types. Survival under all conditions was longer than 30 days for both culture independent and dependent methods, this is substantially longer than previous studies and, if this is an infectious dose, longer than the current recommendation of resting a field for 14 days to prevent onward infection

    Antifibrinolytics attenuate inflammatory gene expression after cardiac surgery

    Get PDF
    ObjectivesAnti-inflammatory effects of tranexamic acid and aprotinin, used to abate perioperative blood loss, are reported and might be of substantial clinical relevance. The study of messenger ribonucleic acid synthesis provides a valuable asset in evaluating the inflammatory pathways involved.MethodsWhole-blood messenger ribonucleic acid expression of 114 inflammatory genes was compared pre- and postoperatively in 35 patients randomized to receive either placebo, tranexamic acid, or aprotinin. These results were further confirmed by reverse transcription–polymerase chain reaction.ResultsOf the 23 genes exhibiting independently altered postoperative gene expression levels, 8 were restricted to the aprotinin group only (growth differentiation factor 3, interleukin 19, interleukin 1 family member 7, transforming growth factor α, tumor necrosis factor superfamily 10, tumor necrosis factor superfamily 12, tumor necrosis factor superfamily 13B, vascular endothelial growth factor α), whereas both aprotinin and tranexamic acid altered gene expression of 3 genes as compared with placebo (FMS-related tyrosine kinase 3 ligand, growth differentiation factor 5, interferon-α8). In general, less upregulation of pro-inflammatory, and more upregulation of anti-inflammatory, genes was observed for patients treated with antifibrinolytics. Gene expression affected by aprotinin coded mostly for proteins that function through serine proteases.ConclusionsThis study demonstrates that the use of tranexamic acid and aprotinin results in altered inflammatory pathways on the genomic expression level. We further demonstrate that the use of aprotinin leads to significant attenuation of the immune response, with several inhibitory effects restricted to the use of aprotinin only. The results aid in a better understanding of the targets of these drugs, and add to the discussion on which antifibrinolytic can best be used in the cardiac surgical patient
    • …
    corecore