1,178 research outputs found

    Logical Specification and Analysis of Fault Tolerant Systems through Partial Model Checking

    Get PDF
    This paper presents a framework for a logical characterisation of fault tolerance and its formal analysis based on partial model checking techniques. The framework requires a fault tolerant system to be modelled using a formal calculus, here the CCS process algebra. To this aim we propose a uniform modelling scheme in which to specify a formal model of the system, its failing behaviour and possibly its fault-recovering procedures. Once a formal model is provided into our scheme, fault tolerance - with respect to a given property - can be formalized as an equational Āµ-calculus formula. This formula expresses in a logic formalism, all the fault scenarios satisfying that fault tolerance property. Such a characterisation understands the analysis of fault tolerance as a form of analysis of open systems and thank to partial model checking strategies, it can be made independent on any particular fault assumption. Moreover this logical characterisation makes possible the fault-tolerance verification problem be expressed as a general Āµ-calculus validation problem, for solving which many theorem proof techniques and tools are available. We present several analysis methods showing the flexibility of our approach

    Team automata for security analysis

    Get PDF
    We show that team automata (TA) are well suited for security analysis by reformulating the Generalized Non-Deducibility on Compositions (GNDC) schema in terms of TA. We then use this to show that integrity is guaranteed for a case study in which TA model an instance of the Efficient Multi-chained Stream Signature (EMSS) protocol

    Integration of analysis techniques in security and fault-tolerance

    Get PDF
    This thesis focuses on the study of integration of formal methodologies in security protocol analysis and fault-tolerance analysis. The research is developed in two different directions: interdisciplinary and intra-disciplinary. In the former, we look for a beneficial interaction between strategies of analysis in security protocols and fault-tolerance; in the latter, we search for connections among different approaches of analysis within the security area. In the following we summarize the main results of the research

    ATG Special Report-The Charlotte Initiative E-Book Symposium

    Get PDF

    Multiplexed Quantum Random Number Generation

    Get PDF
    Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited by electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.Comment: 10 pages, 3 figures and 1 tabl

    Systematization of threats and requirements for private messaging with untrusted servers. The case of E-mailing and instant messaging

    Get PDF
    Modern email and instant messaging applications often offer private communications. In doing so, they share common concerns about how security and privacy can be compromised, how they should face similar threats, and how to comply with comparable system requirements. Assuming a scenario where servers may not be trusted, we review and analyze a list of threats specifically against message delivering, archiving, and contact synchronization. We also describe a list of requirements intended for whom undertakes the task of implementing secure and private messaging. The cryptographic solutions available to mitigate the threats and to comply with the requirements may differ, as the two applications are built on different assumptions and technologies

    Algorithms For Phylogeny Reconstruction In a New Mathematical Model

    Get PDF
    The evolutionary history of a set of species is represented by a tree called phylogenetic tree or phylogeny. Its structure depends on precise biological assumptions about the evolution of species. Problems related to phylogeny reconstruction (i.e., finding a tree representation of information regarding a set of items) are widely studied in computer science. Most of these problems have found to be NP-hard. Sometimes they can solved polynomially if appropriate restrictions on the structure of the tree are fixed. This paper summarizes the most recent problems and results in phylogeny reconstruction, and introduces an innovative tree model, called Phylogenetic Parsimonious Tree, which is justified by significant biological hypothesis. Using PPT two problems are studied: the existence and the reconstruction of a tree both when sequences of characters and partial order on interspecies distances are given. We rove complexity results that confirm the hardness of this class of problems
    • ā€¦
    corecore