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Abstract 

The IEEE 802.4 and FDDI (Fibre Distributed Data Interface) standards are high speed MAC (Medium Access 
Control) protocols for LAN/MANS employing a timer-controlled token passing mechanism, the so-called Timed Token 
Protocol, to control station access to the shared media. MAC protocols belonging to the class of timed token protocols 
support synchronous and real-time (i.e., time-critical) applications, and provide priority among asynchronous (i.e., non 
time-critical) applications. During the last few years, a lot of research has focused on the study of timed token protocols 
to obtain performance measures such as throughputs or mean waiting times. The recent development of the Power-Series 
Algorithm (PSA) has opened new perspectives in the analysis of this class of protocols. This paper shows the versatility 
of the PSA technique to evaluate the station buffer occupancy and delay distributions of a very general model which can 
be used to represent the behavior of several LAN/MANS MAC protocols, among which the timed token MAC protocols. 
Specifically, the focus of the paper is on the solution of an almost exact model of the IEEE 802.4 MAC protocol. Since 
the model we propose and solve numerically by exploiting the PSA technique is an approximate model of the FDDI MAC 
protocol, the paper also reports on a comparison between performance measures obtained for this model and simulation 
results for the corresponding (exact) model of FDDI. 

Keywords: Timed token protocol; Medium access control; IEEE 802.4 Token Bus; FDDI (Fibre Distributed Data Interface); 
Power-series algorithm 

1. Introduction 

The idea behind the class of timed token protocols, such as IEEE 802.4 and FDDI, is firstly to 
partition the services they can provide their users into two main classes, time-critical and non time- 
critical type of services; and secondly, to employ a token passing MAC protocol with a cycle-dependent 
timing mechanism which limits the amount of data (organized into frames) transmitted by a station for 
each class of service in a cycle. The non time-critical class of service may be further subdivided into 
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subclasses according to a priority scheme which is normally optional. The elements of the IEEE 802.4 
MAC protocol which are relevant to our analysis, and the main difference with respect to FDDI are 
described in Appendix A. The FDDI protocol is described in Appendix B. 

The main difficulty in the analysis of a timed token MAC protocol is the high degree of complexity 
and interdependence of the various processes that describe the operations of the protocol itself. In fact, 
when a station has seized the token, time-critical (priority 6 in IEEE 802.4 or synchronous in FDDI) 
frames (if any) are always transmitted, whereas asynchronous frames are only transmitted if the token is 
early. This implies that there are interdependencies between the total service time given at one station, 
the service time required at subsequent stations, and the total cycle time. Therefore, exact analytically- 
tractable solutions for timed token protocols are very difficult to formulate. Simplifying assumptions 
thus have to be made in order to obtain analytically tractable solutions. There are many papers on 
FDDI (see, for example, [ 10,11,15,17,18,22,24,25]) and IEEE 802.4 (see, for example, [12,18,5,26]), 
providing bounds and mean performance figures (typically throughput and mean waiting time). Takagi 
[22] studies the effect of the token rotation timer on the delay-throughput performance of a symmetric 
single buffer system operating under a timed-token protocol. A gauss elimination method is used 
to calculate the finite limiting state distribution of the embedded Markov chain for an FDDI network 
connecting a moderate number of stations. In [24] marginal queue length distributions in FDDI networks 
with only asynchronous traffic are computed with an iterative scheme utilizing several approximations. 
A summary of the research work related to the FDDI performance evaluation can be found in [9]. 

The model 

What we want to stress in the present paper is that the recent Power-Series Algorithm (PSA) [6-81 
allows the numerical calculation of station buffer occupancy and delay distributions for detailed models 
of moderate size. In [4], numerical results are obtained with the PSA for a timed token protocol 
(FDDI) model in which the switchover times between stations are zero, interarrival and service times 
are exponential, and either each station implements the l-limited service discipline (i.e., asynchronous 
traffic has an additional limitation beside the token rotation time restriction), or no station has a service 
limit (i.e., no synchronous traffic). Furthermore, in [4] the influence of the accumulated lateness is not 
considered, and the constraint on the actual cycle time has been replaced by a constraint on the mean 
total time needed by the various queues to serve (transmit) packets in the last cycle. 

The model proposed in this paper removes several of the above limitations, and becomes almost exact 
for the IEEE 802.4 token bus MAC protocol. Specifically, in our model the number of frames allowed to 
be transmitted by a station during one cycle of the server may be restricted by any limit, the switchover 
times are different from zero, and the switchover and service times are described by Erlang distributed 
random variables, cf. e.g. [16]. Note that by using an Erlang distribution with a sufficient number of 
stages, we can, in principle, approximate as closely as we want both the deterministic switchover times 
between stations in a real LAN/MAN and constant service times.2 On the basis of an example, it will be 
shown that accurate estimates for the case of constant service and switchover times can be obtained from 
the cases of exponentially and Erlang-2 distributed times. The first example in Section 5 also shows that 
replacing the constraints on the actual cycle times by constraints based on the actual numbers of served 

2 Constant service times are particularly important because the wide area ATM subnetworks, to which LAN/MANS will be interconnected, 
manage packets of fixed length (i.e., cells) rather than of variable lengths. 



J.F!C. Blanc, L. Lenzini/Peformance Evaluation 27&28 (1996) 391-409 393 

frames times the corresponding mean service times and on the mean switchover times has only a minor 
influence on the waiting time characteristics. 

In our model a distinction is made between access class 6 queues (type ST queues, i.e., synchronous 
or time-constraint traffic) and the other queues (type AT queues, i.e., asynchronous or non time- 
constraint traffic). We allow an arbitrary distribution of type ST and type AT queues within the logical 
ring; furthermore, type ST and type AT queues can have arbitrary hi_pri_token_hold_time and TTRT 
(to be indicated briefly by K and R respectively in the rest of the paper) parameters respectively. Thus, 
there can be as many different hi_pri_token_hold_time’s as the number of type ST queues, and likewise 
for type AT queues. Stations generating frames of different access classes are modelled by multiple 
queues, one for each relevant access class. 

A virtual substation may initiate a transmission of a non time-critical frame if the token hold timer 
has not reached the TTRT threshold. This might cause an additional delay in the release of the token, 
hereafter called overflow transmission (asynchronous overrun in FDDI), which is bounded by the time 
for the transmission of a frame of maximum length. According to the IEEE 802.4 standard, the on-going 
transmission shall nevertheless be completed. To make our model as general as possible and in order 
to make a comparison with FDDI (which allows for asynchronous overrun), we model this overflow 
transmission as well. 

To conclude, in the timed token model we propose and solve throughout, we only neglect the 
accumulated lateness. Therefore, the proposed model is an exact model (to the extent that an Erlang 
distribution with a sufficient number of stages represents a constant distribution) for the IEEE 802.4 
standard and an approximate (but fairly precise) model for FDDI. 

Finally, in our model, time-critical and non time-critical frames are assumed to be generated by a 
Poisson process. While for non time-critical frames this choice is commonly made, for time-critical 
frames, at first glance, it may seem inadequate. However, when time-critical frames are generated by a 
Variable Bit Rate (VBR) video source [21] or by an aggregate number of voice sources [ 131, it has been 
shown that a Poisson distribution very well approximates the real sources. In principle, the PSA can 
also handle systems with Markovian arrival processes (MAPS), cf. [27], but this requires a still larger 
supplementary space than the MAC protocol already demands. 

Organization of the paper 

Notations for our model are introduced in Section 2. This section also contains a detailed description 
of the model, in particular of the timed token access control protocol, and some remarks on the stability 
of the system. In Section 3 the queue-length process for this model is transformed into a Markov 
process with the aid of some supplementary variables, and the balance equations for the stationary state 
probabilities are given. The recurrence relations of the PSA for this model are derived in Section 4. 
Several numerical examples are presented in Section 5, where results of our model are also compared 
with simulation results for systems with an FDDI protocol. Section 6 contains some concluding remarks. 

2. The model: notations and assumptions 

The communication system consists of S stations (queues) and a single token (server) which visits 
the stations in cyclic order. Frames arrive at queue j according to a Poisson process with rate hj, 
j = l,..., S. The superposition of the arrival processes at the various queues is a Poisson process with 
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rate A I Cf=, hj. Each queue may contain an unbounded number of frames. At each station frames 
are served in order of arrival. Service times of frames arriving at queue j are assumed to be Erlang 
distributed with @j exponential phases, each with rate pj, j = 1, . . . , S. The mean service time Bj for 
frames at queue j is then given by pj = \ysi/pj, j = 1, . . . , S. The load offered at queue j is defined 
ZiS pj L Aj/?j, j = l,..., S, and p G Cj=1 pj will denote the total load offered to the system. The 
times the server needs for switching from queue j - 1 (queue 0 indicating queue S) to queue j are also 
assumed to be Erlang distributed, with Qtj exponential phases, each with rate Vj, j = 1, . . . , S. The 
mean switchover time Sj from queue j - 1 to queue j is given by Sj = Qj/Vj, j = 1, . . . , S. The mean 
total switchover time during one cycle of the server along the queues is denoted by A A CT=, 6j. The 
target token rotation time, exclusive the total expected switchover time A, at queue j will be denoted 
by Rj, j = 1, . . . . S. Let Vj denote the actual number of frames served at queue j since the beginning 
of the last completed visit of the server to that queue, j = 1, . . . , S. This means that if the server is 
currently serving a frame at queue j, j = 1, . . . , S, then vj is the sum of the number of frames served 
at that queue during the previous visit and those already served during the current visit. When the server 
leaves queue j, the value of uj is reset to the number of services performed during the just completed 
visit to this queue, j = 1, . . . , S. For a given v A (~1, . . . , US), let 

T(v) = T(Vl,..., Us) k 2 VjBj (2.1) 
j=l 

denote the (approximate) actual token rotation time, also exclusive the total expected switchover time 
A, based on constant service times. The maximum number of frames that the server is allowed to serve 
during a visit to queue j will be denoted by Kj, j = 1, , , . , S. When the server arrives at queue j, it 
will pass if that queue is empty or if the (expected) token rotation timer has expired, i.e. if T(v) 2 Rj; 
otherwise, it will start servicing frames at that queue until either the queue becomes empty, or the 
maximal number of frames, Kj, has been served, or the rotation timer T(v) which is augmented by pj 
after each service completion exceeds the target Rj, j = 1, . . . , S. Note that this target will have no 
effect on the number of frames served during a visit of the server if Rj > c,“=, K& + (Kj - 1)/3j, 
j = l,..., S. On the other hand, if Kjpj > Rj then the limit Kj has no effect because the maximal 
number of frames served during a visit of the server to queue f is equal to [Rj/Bjl, j = 1, . . . , S ([xl 

denotes the smallest integer larger than or equal to x). Let Kj A min( Kj, rRj/pjl} be the effective 
service limit at queue j, j = 1, . . . , S. 

Since in our model frames are approximately of constant length, frames belonging to type ST queues 
are served (i.e., transmitted) according to a K-limited service discipline that limits the number of frames 
that can be served during the token visit; the value of the limit is generally station dependent. From a 
purely mathematical standpoint it is convenient to assume that the target token rotation time R is infinite 
for a type ST queue, and that the frame limit K is infinite for a type AT queue. Hence, we model a 
generic type ST queue j by Kj finite and Rj infinite, and we model a generic type AT queue by Rj finite 
and Kj infinite. 

Because the number of frames served per cycle at a queue in the above described polling systems 
with token rotation time restrictions cannot be more than in polling systems without such restrictions, 
but with the same effective service limits Kj, j = 1 , . . . , S, a necessary condition for stability of the 
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former systems is, cf. e.g. [7], 

Further, it is shown in [ 191 that in the special case when the mean service times Bj, j = 1, . . . , S, 
are all equal to, say, /?, and when the targets Rj, j = 1, . . . , S are all equal to the same multiple of 
the mean service time, say, Rj = R = M/3, and the service limits do not influence the system, i.e. 
Kj=M=R/p,forj=l,..., S, the restriction on the rotation times implies that the condition 

(2.3) 

should hold in case of stability. In all other cases of our model, the condition for stability seems to 
be unknown (in [23] a generalization of (2.3) to systems with different targets Rj is given, but our 
experiments indicate that this condition is not always correct, cf. the comments on Table 5 in Section 5). 
Still we will assume stability throughout the paper. In numerical experiments with the PSA instability 
can be detected by the occurrence of negative state probabilities. 

3. The queue-length process 

The random variable Nj will indicate the number of frames present at queue j in steady state, 
j = I,..., S. Beside the vector of random variables N A (Nl, . . . , Ns) a number of supplementary 
variables are needed to obtain a Markov process. The supplementary variable Uj will indicate the 
number of services which have been performed during the last completed visit to queue j, j = 1, . . . , S. 
The range of values of the vector U G (U1 , . . . , Us) is the product set 

KA&{O,l~..e~Ki,. (3.1) 
j=l 

The supplementary variable H will indicate the queue to which the server is switching or to which the 
server is attending. The supplementary variable 2 will indicate the action of the server. More precisely, 
2 = 0 will indicate that the server is switching and 2 = K will indicate that the server is serving the 
Kth frame during the current visit. The supplementary variable Cp will indicate the actual phase of the 
current switchover time or service time. We will assume that the Markov process (N, U, H, 2, @) is 
stable, and denote the stationary state probabilities of this process by p(n, u, h, K, #), n E NS, u E K, 
h=l,..., S,K=l,..., &,$=l,..., QhifK=O,G=l,..., \IrhifK>O.Inordertoformulate 
the balance equations for this stationary Markov process we will use the indicator function Z{c) taking 
the values 0 (if C is false) or 1 (if C is true), and the unit vectors ej, j = 1, . . . , S, in NS. The 
balance equations for the probabilities of states in which the server is switching are, for n E NS, u E K, 
h = 1, . . . , S, 4 = 1, . . . , Cl?,,, 

[A + 4p(m u, h, O,@> = khjlfnj,l]pCn - ej, u, h, 0,4) + a&2)p(n, u, h, 0,4 - 1) 
j=l 

h-1 

+ /-h-lz{U,,_,?l.C$=l) c ‘{n,,_,=O VUh_,=Kh_,VT(U+Keh_I)~Rh_I) 

K=O 
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x z(T(u+(K-l)eh_,)<Rh_,)p(n + eh-1, u + (K - uh-l)eh-lr h - 1, K, Qh_,) 
Kh-1 

+ Uh-1 ~(u,_,=O,~=l) c z(~h_,=o”T(U+Keh_I)~Rh_~)P(n, u + Keh-1, h - 1, 0, S2h-l). 
K=O 

(3.2) 

The first term at the right-hand side stands for transitions caused by an arrival of a frame at one of 
the queues. The second term stands for a phase transition in the Erlang distributed switchover time. 
The third term describes a transition from a last service at queue h - 1 to a switch to queue h; such a 
transition can only occur if z&-i 2 1, indicating that at least one service has been performed during the 
last visit to queue h - 1, if the token rotation timer at queue h - 1 had not expired at the instant when 
the server was ready to start the Uh_ith service, and if either queue h - 1 became empty or the service 
limit of queue h - 1 had been reached or the token rotation timer at queue h - 1 had expired after this 
&_tth service. The fourth term describes a transition from a switch to queue h - 1 to a switch to queue 
h; such a transition can Only occur if U&l = 0, indicating that no service has been performed during 
the last visit to queue h - 1, and if either queue h - 1 was empty or the token rotation timer at queue 
h - 1 had expired at the instant when the server completed its switch to this queue. Note that the third 
and fourth terms only contribute if the phase of the current switchover time is 4 = 1. 

The balance equations for the probabilities of states in which the server is serving frames are, for 
nENs,uEK,h=l ,..., S,nh>l,K=l,..., Kh,T(u+(K-lI)eh><Rh,~=I ,..., qh, 

j=l 

+ Ph&>2)pb, U, h, K, d’ - 1) + ~h~[K=l,(b=l]p(n, U, h, 0, ah) 

+ phI[K&kl)p(n -t eh, u, k K - 1, *h>. (3.3) 

The first term at the right-hand side stands for transitions caused by an arrival of a frame at one of the 
queues. The second term stands for a phase transition in the Erlang distributed service time. The third 
term describes a transition from a switch to queue h to the first service at queue h (K = 1). The fourth 
term describes a transition from one service at queue h to another service at queue h (K ? 2). The last 
two types of transitions can only occur if the timer had not expired before the (new) service started, i.e., 
if T(u + (K - l)eh) -c Rh, and if the phase of the current service time is 4 = 1. It should be noted that 
forallnENS,uEK,h=l ,..., S,K=l,..., &,#=I,...,%, 

p(n, u, h, K, $1 = 0, ifnh=O, orT(u+(K-l)eh)L&, (3.4) 

because the server cannot be serving a frame at a queue which is empty or at which the token rotation 
timer had already expired when the server was ready to start a (new) service. Finally, it holds by the law 
of total probability that 
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4. The power-series algorithm 

Before the recurrence relations of the PSA for the present model are derived, we introduce the 
following bilinear mapping of the interval [0, l] onto itself: 

8 = (1 + G)p 8 

l+Gp ’ ‘= l+G-G8’ 
(4.1) 

This mapping is needed to enlarge the radius of convergence of the power-series expansions and to 
avoid numerical instabilities. The choice of the parameter G depends on the model on hand. For the 
present type of models values in the order of G = 1.5 give good results. Next, we introduce power-series 
expansions of the state probabilities as functions of 8: 

p(U,U,h,K,#) = cQ 81n1 c @b(k; n, u, h, K, $). 
k=O 

(4.2) 

Here, we use the notation In] A Ott + . . . + ns. In order to obtain a parametrization of the model as a 
functionof8wewritehj=ajp=aj8/(1+G-G8),j=l,...,S,andA=Ap=A8/(1+G-G8), 
cf. (4.1). These expressions and the expansions (4.2) are substituted into the equations (3.2), (3.3) and 
(3.5) for the state probabilities. By equating coefficients of corresponding powers of 8 on both sides 
of these equations one obtains relations for the coefficients of the power-series expansions of the state 
probabilities. The recurrence relations for the coefficients of the probabilities of states in which the 
server is switching are, for k = 0, 1,2, . . . , n E NS, u E Ic, h = 1, . . . , S, Cp = 1, . . . , !$,, 

(I+ GbNk; n, u, h, 0,4> 
s 

= 
c ajI(nj,l)b(k; n - ej, U, h, 0, $I+ [GUN - AlI(k>l$(k - 1; n, U, h, 0, $1 
j=l 

+ ~h44~21[(1 + GW; n, u, h, 0, 4 - 1) - G&&(k - 1; n, u, k O,$ - 111 
Kh-1 

+ ~h-l~{u,~_,,l,qkl} c z[~~_,=~“U~-,=~~-,“~(“+K~h_,)~~h_,]z(~(”+(K--l)~~_,)<~~-,) 

/c=O 

x [(l + G)&ljb(k - 1; n + eh-1, u + (K - uh_l)eh-1, h - 1, K, 9K-1) 

- GZ(,,$(k - 2; n + eh-1, u + (K - uh-deh-1, h - 1, K, @K-I)] 
Kh-I 

+ VII-1 ~{uh-,“o.@J=l] c z(,,_,=o”T(u+K~h_,)~Rh-,][(l + W(k ny u + K‘%-1, h - 1, 0, %-1) 

lc=O 

- G&1$& - 1; n, u + Keh-1, h - 1, 0, S&-l)]. (4.3) 

The recurrence relations for the coefficients of the probabilities of states in which the server is 

serving frames are, fork = 0,1,2 ,..., n E NS, u E K, h = l,..., S, nh 2 1, K = l,..., Kh, 
T(u+(K-l)eK)<&,@=l,..., q’h, 

(1 + G)I-L&k U, u, k K, @) 
s 

= c ajz,nj~llb(k; n - ej, U, h, K, 4) + [GP~, - A]z[k,l)b(k - 1; n, U, h, K, $1 
j=l 
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+ rl~,d~4(1 + GMk n, u, h, K, 4 - 1) - G&1$@ - 1; n, u, h, K, $J - l>l 

+ ~Zl~=t,+tl[(l + W(k; n, u, h, 0, %) - GZlk,+(k - 1; n, u, h, 0, S&)1 

+ ~~hZ1~~2,+1)[(1 + G)Zlkpl#(k - 1; n + eh, u, h, k - 1, %) 

- GZ(&$k - 2; n + eh, u, h, K - 1, %>I. 

The law of total probability implies: fork = 0, 1,2, . . . , 

(4.4) 

(4.5) 
K=l $=l J 

The relations (4.3) and (4.4) can be used to compute the coefficients of the power-series expansions of 
the state probabilities in a mainly recursive manner when a suitable ordering of the states is adopted, cf. 
[7,8]. The only term which may prevent recursive computation is the term with b(k; n, u + keh-1, h - 
1, 0, 1) in (4.3). This term is only relevant if uh-1 = 0. This suggests that the coefficients should be 
computed, for fixed k and n, in decreasing order of uj, j = 1, . . . , S. In this way, only the term with 
K = 0 may cause a problem. It is readily verified that the only case in which the coefficients cannot be 
computed recursively is the case n = 0 and u = 0; this is the only situation in which the server can 
make a complete cycle along the queues without a change in the values of N and U. In the case n = 0 
andu=OEq.(4.3)reducesto:fork=0,1,2 ,..., h=l,..., S,#=l,..., S&, 

b-1 

= [Guh - AIZIklllb(k - 1; 0,0, h, O,#) + VHZ(+I~ ~[(1 + GMk; 0, wz-1, h - l,O, Qz-1) 
K=O 

- GZ{k,l,b(k - 1; 0, Keh-1, h - l,O, G-d1 

+ t~~Zt~~2~C(l + GM; O,O, h, 64 - 1) - GZ(&4k - 1; (40, h, 039 - 111. (4.6) 

This forms, for each fixed k, k = 0, 1,2, . . . , a dependent set of equations for the coefficients 
b(k;O,O,h,O,4), h = l,..., S, 4 = l,..., C2h. Note that these sets of equations have a similar 
structure as those which have been encountered in cyclic polling models without token rotation timers, 
cf. [6,7], although the general form of the recursions (4.3) and (4.4) is quite different from that of the 
recursions for the latter models. The sets of Eqs. (4.6) can be solved together with (4.5). For the case 
k=O-whichcorrespondstothecasep=O-wenotethatforh=l,...,S,~=1,...,52h, 

b(0; 0, u, h, 0, cj) = 0, if u # 0, (4.7) 

because the components of U will all vanish if there are no arrivals. In this case, (4.5) reduces to 

h 

22 
b(0; O,O, h, O,@) = 1. (4.8) 

h=l @=l 
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Table 1 

The maximal number of terms with a storage capacity of 5 000 000 coefficients 

K 11 12 2 2 2 2 3 3 4 
\1, 12 4 112 2 4 12 1 
Q 12 4 12 12 4 12 1 

s=2 788 556 392 427 370 330 301 212 277 195 197 
S = 3 82 64 50 46 42 39 36 28 31 24 22 
S =4 27 22 18 16 16 14 13 10 10 7 7 

Fork= 1,2,..., relation (4.5) can be rewritten as 

9 i”: b(k; 0, 0, h, 0,4) = - 2 . . . 2 &LO) k T W; 0, u, k (I@> 
h=l #=l u1=0 us=0 h=l 4~1 

- 

E*C g--g [,g 
b(k-inl;n,u,h,O,~~+j?:~b(k-(n,:n,u,h,K,~~ . 

K=l f$=l 
15lnlsk 

I 

(4.9) 

Hence,foreachk,k=0,1,2 ,..., one set of linear equations of size c,“=i ah - all with the same 
determinant - has to be solved to obtain the coefficients for states with n = 0 and u = 0; and all other 
coefficients can be computed recursively. See Appendix C for a detailed computation scheme. 

The number of coefficients which have to be computed in order to determine the power-series 
expansions up to the Mth power of 8 (or p) is 

(4.10) 

Note that quite some coefficients may vanish, cf. e.g. (3.4), (4.7). Moreover, it is not necessary to keep 
all computed coefficients in memory until the end of the execution of the algorithm if the coefficients of 
the power-series expansions of the desired performance measures are updated when those of the state 
probabilities are computed, cf. [g]. In Table 1 the number of terms of the power-series expansions is 
listed that can be computed with a given storage capacity, for systems with the same service limit K, 

the same number of phases of the service time distributions q and the same number of phases of the 
switchover time distributions L? for all queues. 

Finally, it should be noted that the convergence of the power series can be accelerated with the aid 
of the so-called E-algorithm, cf. e.g. [7,8]. The accuracy of the results obtained with the PSA can be 
estimated by inspection of the series produced with the aid of the E-algorithm. The relative errors in the 
data to be presented in the next section are estimated to be in the order of 0.1% or (much) less. The 
correctness of the implementation of the PSA has been carefully checked by comparison with simulation 
experiments. 
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Table 2 

Three-queue model: the influence of the service and switchover time distributions 

1 1 1.57 10.27 29.05 10.62 1.73 12.44 36.64 22.40 
1 2 1.57 10.24 28.98 10.59 1.73 12.42 36.82 22.46 
1 4 1.56 10.23 28.95 10.58 1.73 12.41 36.54 22.33 
2 1 1.22 7.98 22.96 8.35 1.25 9.53 28.72 17.56 
2 2 1.22 7.95 22.89 8.32 1.25 9.50 28.67 17.53 
2 4 1.21 7.94 22.86 8.31 1.25 9.49 28.63 17.50 
4 1 1.05 6.88 19.90 7.22 1.00 8.11 24.74 15.14 
4 2 1.04 6.85 19.82 7.19 1 .oo 8.09 24.65 15.09 
4 4 1.04 6.84 19.79 7.18 1.00 8.08 24.63 15.07 

E(K) EIW UIWII 

Table 3 

Three-queue model: estimating performance measures for constant times 

Est. ‘P, R EIWI EIW EIW31 EIW) flIW11 a{W21 a(W31 a(W) 

I,2 4 1.04 6.80 19.81 7.17 1.00 8.04 24.71 15.10 
1,2 co 0.86 5.64 16.73 6.02 0.76 6.57 20.74 12.67 
2,4 co 0.86 5.73 16.69 6.02 0.75 6.66 21.13 12.83 

Sim. 00 0.86 5.73 16.32 5.94 0.76 6.66 19.83 12.22 

5. Examples 

Once the moments of the joint queue length distribution have been computed those of the waiting 
time distributions can be determined in the usual manner for polling systems with Poisson arrival 
streams, cf. e.g. [7]. In the examples below Wj denotes the waiting time, without service time, at 
queue j, j = l,..., S, and W denotes the waiting time, without service time, of an arbitrary frame. 
In all examples the mean switchover times between the queues are chosen to be equal, i.e. 6j = A/S, 
j = l,..., S. The influence of individual switchover times on performance measures is usually limited, 
cf. e.g. [6]. The most important characteristics of the switchover times are the first two moments of the 
total switchover time of the server during a cycle along the stations. 

In the first example we study the effects of the number of phases of the Erlang service time 
distributions and switchover time distributions on the waiting time characteristics. To this end, we 
consider a three-queue system with mean service times pj = 1.0, j = 1,2,3, and with total mean 
switchover time A = 0.15. Queue 1 is a station with arrival rate hi = 0.4 and with synchronous traffic. 
The service discipline at this station is Ki = 2, Ri = oo. Queues 2 and 3 are stations with asynchronous 
traffic, and identical characteristics. The arrival rates are h2 = As = 0.2 and the service disciplines at 
these stations are R2 = R3 = 1.0, K2 = K3 = co. Due to the target rotation times R2 = Rz = 1.0 these 
stations cannot send more than one frame per cycle, so that the effective service limits are K2 = ks = 1. 
The offered load to this system is readily seen to be p = 0.8. Table 2 shows the means and the standard 
deviations of the waiting times for this system. In each instance in this table all service time distributions 
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consist of the same number of phases, and all switchover time distributions consist of the same number 
of phases. These numbers of phases are indicated in the first two columns. It is seen that the influence 
of the number of phases of the switchover time distributions is only minor, but that the influence of 
the number of phases of the service time distributions is important. However, the latter seems to affect 
mainly the absolute values, and not so much the relative values, of the waiting time characteristics. 
Moreover, the waiting time characteristics turn out to be almost linear functions of the reciprocal of the 
number of phases of the Erlang service time distributions. If we compute for each performance measure 
the difference between its value in the case of exponential distributions (row 1 in Table 2) and that in 
the case of Erlang-2 distributions (row 5 in Table 2), and substract the half of this difference from its 
value in the case of Erlang-2 distributions we obtain very good approximations for the values in the 
case of Erlang-4 distributions (the results are displayed in the first row of Table 3; compare these values 
with those in the last row in Table 2). If we substract the full above mentioned differences from the 
values in the case of Erlang-2 distributions we obtain approximations for the case of constant service 
and switchover times. These results are given in the second row of Table 3. The third row of this table 
contains a similar estimate for the deterministic case, but obtained from linear extrapolation from the 
Erlang-2 and Erlang-4 cases (row 5 and row 9 in Table 2; the first column of Table 3 indicates the 
source of the estimation). The last row of this table contains simulation results for our model, but with 
constant service and switchover times. These estimates have been obtained from a simulation run of 
8,000,OOO time units (service times). The relative widths of the 95% confidence intervals are less than 
1% for station 1, about 2% for station 2 and still in the order of 5% for station 3. Finally, note the large 
differences between the waiting time characteristics of queues 2 and 3 which have the same parameter 
values. These differences are due both to the different positions of these stations wih respect to station 
1 (the synchronous station) and to the fact that queues 2 and 3 manage asynchronous traffic. In any 
cycle, stations 2 and 3 can only transmit if station 1 does not have any frame to transmit, due to the 
values of R2 and R3. Furthermore, station 3 can only transmit if station 2 does not have any frame to 
transmit. These observations explain the larger average waiting times experienced by frames at station 3 
compared to that experienced by frames at station 2. 

Consider next a system with S = 2 queues, Erlang Ed service times and Erlang E2 switchover times. 
The arrival rate at the first queue is four times as high as that at the second queue, i.e. ht = 4h2. The 
mean service times are Bt = Bz = 1.0. Note that the token rotation timer T(v) will only take values 
that are multiples of 1.0 for this model. Table 4 shows the means and the standard deviations of the 
waiting time distributions for this model as function of the target token rotation times RI and R2, while 
the service limits Kt and K2 are chosen such that they do not influence the performance of the system 
(i.e., Z?j = Rj, j = 1,2). Both queues represent stations with asynchronous traffic, but possibly with 
different priorities. The first five entries of the table concern cases in which the stations have the same 
priority (RI = Rz). Note that increasing the TTRT leads to decreasing mean waiting times at station 
1, while RI = R2 = 2.0 yields a minimal mean waiting time at station 2. The larger value of E{ Wt} 
compared to that of E{ WZ} can be explained by the fact that ht = 4h2. The other entries concern cases 
in which the stations have different priorities (RI # R2). By properly adjusting the values of RI and 
R2 it is possible to have E{Wl} < E{W2} although ht > h2. See, e.g., the entries with (RI = 2.0, 
R2 = l.O), (RI = 3.0, R2 = 1.0) and (RI = 3.0, R2 = 2.0). Also note that increasing the TTRT of some 
station may lead to smaller mean waiting times at other stations of which the TTRT is kept fixed; see for 
example the entries with RI = 1 .O fixed and R2 increasing: here, E{ WI} is decreasing. 

Table 5 concerns similar quantities as Table 4, the difference being a larger total switchover time 
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Table 4 

Two-queue model with K1 = K2 = CG, p = 0.8 and A = 0.1 

1.0 1.0 14.24 1.36 11.67 15.07 1.45 14.44 
2.0 2.0 5.31 1.26 4.50 6.09 1.30 5.71 
3.0 3.0 4.18 1.40 3.63 4.79 1.38 4.62 
4.0 4.0 3.71 1.59 3.29 4.52 1.54 4.19 
6.0 6.0 3.26 1.96 3.00 4.09 1.95 3.80 
2.0 1.0 2.14 17.05 5.12 2.21 23.79 12.36 
3.0 1.0 1.89 12.89 4.09 2.02 18.44 9.52 
3.0 2.0 3.39 4.76 3.66 3.99 6.86 4.74 
4.0 3.0 3.48 2.57 3.30 4.24 3.07 4.05 
4.0 2.0 2.05 8.92 3.42 2.16 14.44 7.28 
4.0 1.0 1.77 11.42 3.70 1.93 16.42 8.47 
1.0 2.0 11.68 0.72 9.49 12.39 0.67 11.92 
1.0 4.0 10.97 0.69 8.92 11.65 0.63 11.20 

Table 5 

Two-queue model with K1 = K2 = co, p = 0.7 and A = 0.4 

2.0 2.0 18.74 1.72 15.34 19.62 1.60 18.84 

3.0 3.0 5.63 1.65 4.83 6.41 1.51 5.99 

4.0 4.0 3.82 1.73 3.40 4.56 1.61 4.22 
6.0 6.0 2.70 1.96 2.55 3.37 1.96 3.15 
3.0 1.0 2.41 36.02 9.13 2.44 43.71 23.82 

3.0 2.0 4.58 6.79 5.03 5.22 9.34 6.33 
4.0 3.0 3.59 2.82 3.44 4.30 3.25 4.12 

4.0 2.0 2.24 10.62 3.92 2.30 16.52 8.37 
4.0 1.0 1.96 20.22 5.61 2.06 25.59 13.70 
2.0 3.0 14.24 1.20 11.63 14.99 0.99 14.40 

2.0 4.0 12.84 1.15 10.50 13.56 0.94 13.00 

and a smaller offered load. In this case, the values RI = R2 = 1.0 and the values RI = 2.0, R-J = 1 .O 
correspond to unstable systems. This example reveals a remarkable difference concerning stability 
between polling systems with and without rotation time restrictions. In the latter systems it is necessary 
to increase the service limit of the bottleneck station to prevent instability, cf. (2.2). Here, we observe 
a system which is not stable for RI = 2.0, R2 = 1.0, but which is stable for R1 = 3.0, R2 = 1.0, 
while station 2 forms the bottleneck. Note that the foregoing observations are in contradiction with the 
stability condition given in [23], formula (13). The latter condition applied to the present example would 
give a stability condition p -C l/1.48 % 0.676 for both cases RI = 2.0, R2 = 1 .O, and RI = 3.0, 
R2 = 1 .O. Experiments with the PSA indicate that the former system is still stable for p = 0.697, while 
the latter is still stable for p = 0.750. These properties have been confirmed by simulation of completely 
deterministic systems. 
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Table 6 

Symmetrical models with p = 0.75, A = 0.12 

K R P{L=O) E(L) a(L) P{N=O) EINI a(N) E(W) u(W) 

1 co 0.203 3.58 3.94 0.470 1.19 1.72 3.77 5.24 

1 3.0 0.198 3.72 4.09 0.466 1.24 1.80 3.96 5.59 

1 2.0 0.183 4.11 4.49 0.444 1.37 1.96 4.48 6.22 

1 1.0 0.129 6.10 6.41 0.356 2.03 2.76 7.13 9.39 

2 
64; 

0.219 3.31 3.69 0.488 1.10 1.61 3.41 4.79 

2 0.217 3.36 3.75 0.488 1.12 1.65 3.48 4.99 

2 4.0 0.211 3.50 3.90 0.479 1.17 1.71 3.67 5.22 

2 3.0 0.203 3.67 4.07 0.467 1.22 1.78 3.89 5.47 

2 2.0 0.187 4.07 4.47 0.444 1.36 1.94 4.42 6.10 

3 co 0.223 3.23 3.61 0.493 1.08 1.58 3.30 4.65 

3 10.0 0.223 3.24 3.64 0.493 1.08 1.45 3.32 3.94 

3 8.0 0.221 3.28 3.68 0.493 1.09 1.46 3.37 3.97 

3 6.0 0.219 3.34 3.46 0.489 1.11 1.64 3.46 4.94 

3 4.0 0.212 3.49 3.90 0.478 1.16 1.71 3.65 5.20 

3 3.0 0.204 3.66 4.07 0.467 1.22 1.76 3.88 5.39 

Table 7 

Four-queue models with offered load p = 0.75 

h, =I%2 h, = 2h2 A, = $2 

K, Rz E(WII EIW21 E(W) E{Wi) EIW E(W) Eiw11 EIW21 EIW 

1 1.0 1.41 9.22 5.32 1.80 10.83 4.81 1.16 8.36 5.96 

2 1.0 1.35 8.43 4.88 1.68 9.44 4.27 1.13 7.94 5.67 

1 2.0 1.86 6.39 4.12 2.33 5.20 4.05 1.54 5.57 4.23 

2 2.0 1.54 6.36 3.95 1.83 7.65 3.78 1.36 5.52 4.13 

Table 6 concerns symmetrical systems with three stations, and exponential service and switchover 
times. The mean service times are Bj = 1 .O, j = 1,2,3. This table captures the effects of the service 
disciplines (i.e., the K and R values) on the performance measures in the case in which each station has 
a service limit as well as a target rotation time. These limits and targets are the same for each station in 
this symmetrical system. In the table, N stands for the number of frames present in an individual queue, 
and L f CT=, Nj indicates the total number of frames present in the system, both including the frame 
in service if any. From the table it can be observed that the mean waiting time decreases with increasing 
K when all stations are synchronous (R = 00). Furthermore, when all stations are asynchronous the 
mean waiting time increases with decreasing R for any given K. This behaviour can easily be justified 
by taking into account the way traffic is managed by each station. Finally, note that the mean waiting 
time in the first row of this table can be computed exactly from the well-know pseudo-conservation law 
for polling systems with l-limited service at each station. This yields E{ W} = 83/22 z 3.7727. 

The next examples concern systems with S = 4 queues and with exponential service and switchover 
time distributions. The mean service times are Bj = 1.0, j = 1, . . . , 4. The total mean switchover time 
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Table 8 

Three-queue model with h, = 2h2 = 2J.3, and j3, = 1.0, ,V2 = p3 = 0.5 

/Y E/w11 E{ W2) EIW aiW2) 

0.1 0.16/0.16 0.15/0.15 
0.3 0.3910.41 0.3UO.33 
0.4 0.5910.62 0.4310.46 
0.5 0.9010.96 0.5710.65 
0.6 1.44l1.55 0.7610.91 
0.7 2.5812.81 1.0211.35 
0.8 6.2717.61 1.4U2.12 

0.15/0.15 0.15/0.16 0.2910.31 0.2510.27 0.2510.27 0.2710.29 
0.32iO.33 0.3610.37 0.6710.7 1 0.49/0.54 0.5 l/O.54 O-5910.63 
0.44lO.47 0.5110.54 0.9310.99 0.6UO.71 0.6610.72 0.8010.87 
0.61IO.66 0.7510.80 1.3u1.40 0.7610.94 0.8610.96 1.11/1.20 
0.8410.93 l.lU1.24 1.9512.11 0.9511.28 1.1411.31 lJW1.78 
1.1911.32 1.8412.07 3.2313.49 1.20/1.79 1.53/1.74 2.5912.86 
1.7712.06 3.9314.86 7.1818.67 1.5712.61 2.1112.46 5.7516.97 

Table 9 

Three-queue model with hl = h2 = k3, and 8, = fi2 = /Js = 1.0 

P E(W) 
0.1 0.16/0.17 0.32lO.36 0.0379 9.1e-4 1.8e-5 
0.3 0.4210.47 0.7410.83 0.1289 0.0118 9.9e-4 
0.4 0.6210.71 1.03D.19 0.1859 0.0261 0.0035 
0.5 0.9311.08 1.44/1.68 0.2549 0.0523 0.0108 

0.6 1.4311.72 2.0912.55 0.3415 0.1000 0.0301 

0.7 2.4213.11 3.3514.29 0.4560 0.1893 0.0819 

0.8 5.23f8.27 6.87110.6 0.5298 0.2628 0.1357 

P{N>O) P(N>l} P[N>2) P{N>3} P(N>4) P(N>5) P{N>6) 

3.3e-7 
8.5e-5 
5.Oe-4 
0.0023 
0.0096 
0.037 1 
0.0730 

5.9e-9 
7.7e-6 
7.5e-5 
5.3e-4 
0.0032 
0.0170 
0.0390 

l.le-10 
7.2e-7 
1.2e-5 
1.2e-4 
0.0011 
0.0079 
0.0208 

2.0e-12 
7.0e-8 
1.8e-6 
3.Oe-5 
3.6e-4 
0.0036 
0.0108 

is A = 0.12. Queues 1 and 3 are stations with the same characteristics and with synchronous traflic 

(Al z h3, RI = RJ = 00, K1 = K3). Queues 2 and 4 are also stations with the same characteristics, but 
with asynchronous traffic (h2 = hi, R2 = Rq, K2 = K4 = 00). Table 7 shows the mean waiting times 
for this system for various service disciplines and for various proportions between the arrival rates of 
the synchronous and the asynchronous traffic. In all cases, the total offered load is the same, and equals 
p = 0.75. Due to the symmetry, E{Wt} = E{Ws} and E(W2) = E{W } 4 in all instances. Note that for 
all three considered ratios between the arrival rates the transition from K1 = Ks = 1 to K1 = K3 = 2, 
with R2 = R4 = 1 .O fixed, is advantageous for all stations. However, the transition from K1 = Ks = 1 
to K1 = Ks = 2, with R2 = R4 = 2.0 fixed, is only advantageous for all stations in the cases hi = A2 
and hi = iJ.2; in the case A.1 = 2h2 this transition is not advantageous for stations 2 and 4. This can 
be justified by the fact that increasing the synchronous arrival rate over the asynchronous one penalizes 
the asynchronous stations since their transmissions are subject to time constraints. Increasing R2 and R4 
with K1 = Ks fixed, is advantageous for stations 2 and 4, and disadvantageous for stations 1 and 3, in 
all examples. 

The next examples concern systems with S = 3 queues and with Erlang E4 service and switchover 
time distributions. Tables 8 and 9 concern systems with fixed service limits K1 = K2 = K3 = 1, 
fixed target token rotation times RI = R2 = R3 = 2.0, and with A = 0.15. They show waiting time 
characteristics as function of the offered load p, for two combinations of the arrival rates and the mean 
service times. For each performance measure two values are listed. The left values are the results of 
computations with the PSA for the model described in Section 2. The right values are simulation results 
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Table 10 

Model with A, = h2 = 13, K, = 1, KZ = K3 = CO, R1 = CO, R2 = Rx = 2.0 

P - 

0.1 
0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.16/0.16 
0.3910.35 
0.5410.46 
0.73lO.58 
0.9610.72 
1.25lO.88 
1.63l1.06 

0.16/0.17 0.1610.18 0.16/0.17 
0.4OlO.48 0.41/0.51 0.4oto.45 
0.6OlO.78 0.6410.79 0.6010.67 
0.9211.22 1.00/1.29 0.88/1.03 
1.45/2.08 1.67/2.15 1.36/1.65 
2.4813.99 3.1u4.15 2.2813.00 
5.09112.9 7.88/l 1.2 4.85/8.37 

EIW31 aIN a(W31 aIW1 

0.3210.29 0.3010.35 0.3110.37 0.3 110.34 
0.6510.53 0.72/0.90 0.7610.96 0.71/0.82 
0.81lO.62 1.02/1.39 1.11/1.38 0.9911.20 
0.98/0.70 1.46/2.01 1.65/2.08 1.40/l .75 
1.17/0.79 2.16/3.18 2.58/3.17 2.0812.72 
1.38/0.85 3.4615.52 4.4915.73 3.4614.86 
1 kWO.92 6.54115.8 10.4/13.6 7.63113.2 

Table 11 

Model with hl = 2hz = 2h3, K, = 1, K2 = K3 = co, RI = 00, R2 = Rx = 2.0 

P EIWIJ EIW21 EIW31 E(W) aIWl1 alW21 aIW31 aIW1 

0.1 0.17/0.16 0.16/0.18 0.16/0.18 0.16/0.17 0.32lO.30 0.3010.37 0.3010.39 0.31lO.34 
0.3 0.4110.37 0.39/0.50 0.4OlO.53 0.41/0.44 0.6910.57 0.7110.96 0.7411.05 0.71/0.82 
0.4 0.6OlO.50 0.59/0.80 0.61/0.86 0.6OlO.67 0.91/0.70 1.02/l .46 1.080.59 0.98/1.20 
0.5 0.8410.66 0.90/1.31 0.9611.43 0.89/l .02 1.17/0.82 1.4812.25 1.61/2.42 1.3711.79 
0.6 1.20/0.84 1.4412.3 1 1.5812.42 1.36A.60 1.5410.96 2.26t3.67 2.5213.72 2.0212.80 
0.7 1.77/1.08 2.5614.82 2.94t4.86 2.2612.96 2.10/1.09 3.83t7.02 4.4316.70 3.3215.27 
0.8 2.81/l .37 5.84/14.9 7.39113.2 4.7217.70 3.10/1.25 8.10/19.2 10.0/15.9 7.08D4.1 

for a corresponding system with an FDDI protocol, cf. Appendix B. The simulations have been carried 
out with constant service and switchover times, and the accumulated lateness is dealt with as described 
in Appendix B. The relative widths of the 95% confidence intervals are in the order of 10% or less. 
In the completely symmetrical case (Table 9) also some excess probabilities for the number of frames 
present at a station are displayed for the PSA-model. 

In the final examples, the model of the previous examples is considered, but now there is a service 
limit for queue 1 (synchronous traffic), while there are target token rotation times for queue 2 and 3 
(asynchronous traffic). In both cases, fij = 1.0, j = 1,2,3, Kr = 1 and R2 = Rs = 2.0. In Table 10 
the arrival rates are equal, while in Table 11, Al = 2h2 = 2hs. Also in these tables computations with 
the PSA for the model of the token bus are compared with simulations for comparable systems with an 
FDDI protocol. 

When only non time-critical traffic is managed by all the stations, performance figures of the token 
bus and FDDI are very close up to very high offered load (approx. 70%). On the other hand, when 
there is at least one station managing time-critical traffic the agreement is poor. The above facts are 
obviously due to the different ways the accumulated lateness is managed by the token bus and FDDI 
MAC protocols. 

The computations with the PSA for the models considered in Tables 8-11 took each about 15 minutes 
of CPU time on a workstation to determine 40 terms of the power-series expansions. Note that only one 
run of the PSA is needed to produce performance measures for various values of the offered load p for a 
given system configuration. 
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6. Conclusions 

In this paper we have proposed a general model for communication systems with timed token access 
protocols, including the IEEE 802.4 token bus protocol, and solved it with the aid of the Power-Series 
Algorithm. The model can readily be modified to include finite buffer spaces; this modification only 
requires the addition of a few indicator functions in the balance Eqs. (3.2), (3.3), and hence in the 
recurrence relations (4.3), (4.4). Comparison of performance measures computed with our model with 
those obtained by simulating systems with an FDDI protocol has revealed that these values diverge with 
increasing load. Further improvement of the model could be achieved by including the accumulated 
lateness, and also by using more general (Markovian) arrival processes. Both these extensions of the 
model go at the cost of larger supplementary spaces than indicated in (4.10). As an alternative to 
the approximation of the rotation timers by their expected values, cf. (2.1), one could approximate 
the rotation timers by Erlang distributed timers. An important subject for further research is the 
determination of the stability conditions for the proposed model. 

Appendix A. IEEE 802.4 Token Bus 

The IEEE 802.4 Token Bus standard, cf. [l], specifies a token passing protocol on a bus with an 
optional priority mechanism. Specifically, this MAC protocol identifies four priority classes, denoted 
access classes, termed 0, 2, 4, and 6, with 6 being the highest priority and 0 the lowest. Each access 
class acts as a virtual substation in that the token is passed, internally, from the highest access class 
downward, in the order 4,2,0. A time parameter, denoted hi_pri_token_hoId_time, is assigned to class 
6, whereas each of the other three classes is assigned a parameter, called “target” token rotation time 
(abbreviated as TTRTi, i = 4,2,0). Hence, for the IEEE 802.4 standard, there can be at most three 
different values for the TTRT parameters. Each station using the optional priority scheme will have 
three rotation timers for the three lower access classes, and each access class has its own queue for 
frames to be transmitted. When a station receives the token, it is guaranteed to transmit data frames of 
class 6 until either the station becomes empty, or a period of time equal to hi_pri_token_hold_time has 
elapsed, whichever comes first. For each of the other access classes, the corresponding virtual substation 
measures the time it takes the token to circulate around the logical ring. If the token returns in less than 
TTRT, then the substation transmits frames of that class until such frames are transmitted or TTRT has 
elapsed, whichever comes first. Otherwise, if the token returns later than TTRT the station cannot send 
frames of that priority on this pass of the token, and forwards the token immediately. Hence, priority 
6 class supports the time-constraint service whereas priorities 4, 2, and 0 support non time-constraint 
services. Obviously, if the total transmission time of class 6 data frames in a token cycle exceeds all 
the TTRTs, then no lower class frames can be transmitted at all. The aim of the cycle-dependent timing 
mechanism is that, as the aggregate offered load of class 6 traffic decreases, lower classes are allowed 
to access the channel successively starting from the access class with the largest TTRT down to the one 
with the smallest TTRT. 

The access class service algorithm consists of loading the residual value (target token rotation time 
minus the contents of the token rotation timer for the corresponding access class) from the token rotation 
timer into a token hold timer, and resetting the same token rotation timer. The main difference between 
the IEEE 802.4 token bus and the FDDI MAC protocols is the management of negative residual values 
or accumulated latency as it is called in FDDI (see Appendix B); the latter MAC protocol takes this into 
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account, whereas the former MAC protocol does not. In other words, the IEEE 802.4 standard looses 
memory of this accumulated latency by resetting the proper token rotation timer, whereas FDDI keeps 
track of the accumulated latency (by setting to 1 the Late_Ct counter; see Appendix B) until it has been 
recovered because, for example, one station does not transmit time-critical frames in some cycle. 

Appendix B. FDDI (Fibre Distributed Data Interface) 

FDDI, standardized by the American National Standards Institute X3T9 committee (e.g., [2,3]) is 
based on a dual fiber optic ring. To provide guaranteed service to time-critical (synchronous) traffic, 
FDDI enforces a limitation on how much synchronous traffic each node can send per token received. 
Specifically, a Target Token Rotation Time (TTRT) is negotiated among stations during ring initialization 
and whenever a station captures the token it can transmit synchronous data up to a maximum duration of 
Ts, I (TTRT - o)/S, where S is the number of active stations while 01 is a constant term which takes 
into account the maximum ring latency, the maximum frame length, and the time it takes to transmit 
a token. Hence, priority 6 service plays in the Token Bus the same role as the synchronous service in 
FDDI. To compute the maximum time a station can transmit non time-critical traffic (asynchronous) 
data when it captures a token, two timers are used: the Token Rotation Timer (TRT) and the Token 
Holding Timer (THT). TRT measures the time between the receipt of two consecutive tokens while THT 
is used to limit the transmission of a station when a token is captured. If TRT reaches TTRT before the 
token returns to the station, a variable, named Late_Ct, is set to 1 and TRT is restarted. When the token 
arrives at a station with Late_Ct=l the token is called a lute token. Whenever a late token is captured, 
only synchronous transmissions are enabled, TRT is not restarted, and Late_Ct is set to 0. TRT is left 
running to count both the amount of time by which the token arrived late (accumulated lateness) plus 
the next rotation time of the token. On the other hand, if the token arrives before TRT reaches TTRT and 
Late_Ct is 0, the token is named an early token. Whenever an early token is captured, the current value 
of TRT is stored in the THT, TRT is reset to time the next rotation of the token and synchronous frames 
are transmitted for a time up to Ts,. After synchronous transmission, THT is enabled and asynchronous 
transmissions start (THT is disabled during Synchronous frame transmissions). The difference between 
TTRT and the content of THT is the maximum time available for asynchronous transmissions in this 
cycle. Any unused time remaining in THT at the end of asynchronous frame transmissions is lost; it 
cannot be retained until the next token arrives. A station may initiate a transmission of an asynchronous 
frame if the timer THT has not reached the TTRT threshold. This may cause an additional delay in the 
release of the token (hereafter called asynchronous overrun) since the transmission of an asynchronous 
frame is always completed. The asynchronous overrun is bounded by the time for the transmission of a 
frame of maximum length. Multiple levels of asynchronous priorities may be distinguished by a station. 
For each priority level 12, a threshold value (T-Pi-i(n)) is defined. T_Pri(n) are an ordered sequence 
of values in the range [O,TTRT], higher priorities have higher T_Pri values and the highest priority 
has a threshold which is equal to TTRT. Asynchronous transmissions start from the highest priority. 
Asynchronous frames of priority n may only be transmitted if THT is less than T_Pri(n). If multiple 
asynchronous priority levels are not implemented, all asynchronous frames have a threshold value which 
is equal to TTRT. 

It has been formally proved [ 14,201 that FDDI guarantees upper bounds for mean and maximum cycle 
times, e.g., the average token rotation time does not exceed TT.RT, and the maximum token rotation time 
does not exceed twice the TTRT. 
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Appendix C. The computation scheme 

The computation scheme for calculating the coefficients of the power-series expansions of the state 
probabilities up to the Mth power of 0 reads: 
fork = 0, n = 0, u = 0 do solve set of Eqs. (4.6), (4.8) with k = 0. 
form = 1 toMdo 
fork=Otomdo 
for all n with jn( = m - k do 
for ~1 = K1 downto 0 do 
. . . . . 
for US = KS downto 0 do 

ifn#Ooru#Othen 
if u = 0 then determine an h = h(n, u) such that ylh 2 1 

else determine an h = h(n, u) such that uh 1 1, 
forh=h(n,u)+l,..., s,l,..., h(n,u)do 

for C#I = !& downto 1 do compute b(k; n, u, h, 0, #) according to (4.3), 
fOrK=ltO&dO 
for Q, = qh downto 1 do 

compute b(k; n, u, h, K, 4) according to (4.4), 
else solve set of Eqs. (4.6), (4.9) with k = m. 
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