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Abstract:
We introduce the notion of privacy-preserving verifiability for security protocols. It holds when a
protocol admits a verifiability test that does not reveal to the verifier about the protocol’s execution
more than it needs to know to run the test. Our definition of privacy-preserving verifiability is
general and applies to cryptographic protocols as well as human security protocols; however, in this
paper we exemplify it in the domain of e-exam systems. We prove that the notion is meaningful: we
study an existing exam protocol that is verifiable but lacking verifiability tests which are privacy-
preserving. We prove that the notion is applicable: we extend the same protocol using functional
encryption so that it admits a verifiability test that preserves privacy according to our definition.
We further verify in ProVerif that the verifiability holds despite malicious parties and that the new
protocol maintains all the security properties that the original protocol enjoyed, so proving that
our privacy-preserving verifiability can be achieved from existing security.

1 Introduction

‘Being verifiable’ is an appreciated quality for
a security protocol. It says that, during its ex-
ecution, the protocol safely stores pieces of in-
formation that can be used later as evidence to
determine that certain properties hold on the pro-
tocol’s run. A voting system that offers its voters
to “verify that their votes have been cast as in-
tended”, for instance, generates data that allow
voters to test that their votes have been regis-
tered and that it contains, with no mistake, the
expression of their vote (Adida and Neff, 2006).

This paper is about verifiability, but it also
discusses a new requirement for it. The require-
ment states that a curious verifier, in addition to
the verifiability test’s result, should learn no more
about the system’s execution than the pieces of
information that he needs to know run the test.

The need-to-know principle is not new (e.g.,
see (Department of Defence, 1987)). Not new is
also the particular interpretation of the princi-
ple that link to techniques like zero knowledge
proofs (De Santis et al., 1988) where a verifier is

convinced of a given statement’s truth without
learning no more than that. However, in this pa-
per we originally present and discuss the need-to-
know principle as a requirement for verifiability
tests.

Our notion of privacy-preserving verifiability
test needs to be formally defined, and we do so
in § 3. We prove that our notion of privacy-
preserving verifiability is meaningful in § 4. Here,
we refer to the particular domain of electronic
exams, where verifiability and privacy are sensi-
tive properties (the first should work despite un-
trusted authorities, the second is not everlasting
but conditional). We show for a particular proto-
col, called Remark! (Giustolisi et al., 2014), that
we know well and which we have proved verifiable
in (Dreier et al., 2014) that several of its current
universal verifiability are not privacy-preserving
according to our definition.

In § 5, we give evidence that achieving privacy-
preserving verifiability is possible. In particular,
again taking Remark! as an example, we demon-
strate that by modifying the protocol’s design it
becomes possible to have for one of the proto-
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col’s verifiability property a verifiability test that
is now privacy-preserving. We use functional en-
cryption (Boneh et al., 2011) for this purpose but
other viable solutions may be possible. Possible
is also to extend privacy-preserving verifiability
to the protocol’s other verifiability properties.

In § 6, we verify with Proverif (Blanchet,
2014), a security protocol verifier, that the new
design does not compromise any of the protocol’s
enjoyed security properties including all its other
verifiability properties. This analysis is a signifi-
cant step since we prove that privacy-preserving
verifiability for a specific verifiability test can be
achieved while preserving all the existing security
properties of the protocol.

Before moving to the technical part of
the paper, it is important to anticipate that
private-preserving verifiability can be potentially
achieved in different ways, using one of the tech-
niques that computer security research offers to-
day for minimizing the disclosure of informa-
tion. Non-interactive Zero-knowledge proofs (De
Santis et al., 1988) and functional encryption
schemes (Boneh et al., 2011) are two techniques
that stand out for our purposes. As antic-
ipated above, our privacy-preserving verifiable
exam protocol makes use of the second technique
(recalled in § 5.1). We do not have a proof here,
but we argue in § 7 that only functional encryp-
tion has features that make it suitable to our pur-
pose.

2 Related Work

Privacy and verifiability, apparently two con-
trasting properties, have been discussed in the
literature mainly to show that they can be both
satisfied in the same system.

Most of the work in this sense is about vot-
ing systems, and the literature is vast in this do-
main. To make our point, we comment the work
of Cuvelier et al. (Cuvelier et al., 2013). The
authors propose a new primitive, called Commit-
ment Consistent Encryption, with which they re-
design a voting scheme for an election that is ver-
ifiable while ensuring everlasting ballot privacy.
The problem they solve for voting is clearly re-
lated to that we raise here: avoid that from a
public audit trail a verifier could learn more than
it is allowed to learn. To a certain extent, Cuve-
lier et al. propose a cryptographic instance of the
problem that we formalize in this paper. How-
ever our notion of privacy-preserving verifiability

is more general and not necessarily cryptographic:
it applies to cryptographic protocols as well as to
non-crypto protocols. It is, in other words, a func-
tional requirement for the verifiability tests that
a system offers to auditors. In this sense, our
work relates more to the plentiful research that
discusses requirements and definitions of privacy.
Again, the literature on this subject is huge, but
the work that most closely represents the notion
of privacy-preservation that we advance here is
that of Mödersheim et al. (Mödersheim et al.,
2013). The work presents and discusses α−β pri-
vacy where α is what an adversary knows, and
β are the cryptographic messages that the adver-
sary sees. Then α− β privacy means that the in-
truder can derive from β only what he can derive
from α already. We have not tried it, but we think
that our notion of privacy-preservation can be for-
mulated in term of α−β privacy, which would be
definitely an interesting task since Mödersheim
et al. proves that their definition subsumes static
equivalence of frames and is in some part decid-
able with existing formal method tools.

Verifiability is a property that has been stud-
ied prevalently, but not exclusively, in secure vot-
ing. Different models and requirements have been
proposed (Küsters et al., 2010; Kremer et al.,
2010). In voting, individual verifiability signi-
fies that votes have been “cast as intended”,
“recorded as cast”, and “counted as recorded”
(Benaloh and Tuinstra, 1994; Hirt and Sako,
2000), while universal verifiability signifies that
auditors can verify the correctness of the tally
using only public information (Cohen and Fis-
cher, 1985; Benaloh and Tuinstra, 1994; Benaloh,
1996). Kremer et al. (Kremer et al., 2010) for-
malised both individual and universal verifiabil-
ity in the applied pi-calculus, and Smyth et al.
(Smyth et al., 2010) used ProVerif to check veri-
fiability in three voting protocols.

We base our definition of verifiability on a for-
malization proposed in a previous work by some
of the authors of this paper (Dreier et al., 2015)
This choice is not a coincidence. That work is
about verifiable e-exams, the same domain that
we take here as a use case to demonstrate that our
notion of privacy-preserving verifiability is mean-
ingful and effective. Besides, that work proves
that Remark! (Giustolisi et al., 2014), an exam
protocol rich in security properties, is verifiable.
Such a proof is fundamental for this paper since
we need to consider a protocol that is verifiable,
although we need it be not privacy-preserving.
Thus, as use case, we also chose Remark!.



Although contextualized in reference to ex-
ams, our research is not bound to work in that
domain only. The notion of privacy-preserving
verifiability is abstract, and the solution that we
propose to ensure privacy-preservation is demon-
strated for a universal verifiability test of a com-
mon integrity property; it seems plausible to ap-
ply our results in other domains, like voting or
auction. Proving this claim is future work.

3 Concepts, Models & Definitions

We contextualize our study in the specific do-
main of exams. Here, we recall what an exam
is and discuss an abstract model for protocols in
this family that will be used to define the two
key concepts of this paper: verifiability test, and
privacy-preserving verifiability test.

An Exam’s Anatomy In real exams,there are
usually involved several roles. For the goal of this
work, it is sufficient to consider only three funda-
mental roles: the candidate, the exam authority,
who helps in the organization/execution of the
exam, and the examiner, who grades the exam
tests.

An exam’s workflow is rigidly structured and
organized in at least four distinct sequential
phases. At preparation, an exam’s instance is
created, the questions are selected, and the can-
didates enroll; At examination, the candidates
sit and take the exam i.e., they are identified
and checked for being eligible, receive the test
sheet(s), answer the questions, and quit or sub-
mit their answers for marking; At marking, the
exam-tests are assessed and marked; At notifica-
tion, grades are notified and registered.

An Exam’s Abstract Model An exam and
its execution can be modelled concisely using sets.
The definitions below, slightly simplified, comes
from (Dreier et al., 2015)

Definition 1. An exam is a tuple (ID , Q,A,M)
of finite sets: ID are the candidates; Q are all the
possible questions; A the possible answers; M all
the possible marks.

Definition 2. Given an exam (ID , Q,A,M), an
exam’s execution, E, is a tuple of two sets

• ID ′ ⊆ ID are the registered candidates;

• Q′ ⊆ Q are the official questions of the exam;

and of four relations over the exam

• AssignedQuestions ⊆ (ID×Q), links a ques-
tion to a candidate, supposedly the question
the candidate receives by the authority;

• SubmittedTests ⊆ (ID × (Q × A)), links an
answered test to a candidate, supposedly the
test submitted for marking by the candidate;

• MarkedTests ⊆ (ID × (Q × A) ×M) links a
mark to a exam-tests of a candidate, suppos-
edly the grade given to the test;

• NotifiedMarks ⊆ (ID×M) links a mark to a
candidate, supposedly the mark notified to the
candidate;

These four relations model the state of the
exam’s execution at the end of each of the four
exam phases, like if they were execution logs.
There are no requirements between the relations,
and this is because the model should also express
executions which are erroneous or corrupted. It
may happen that a test assigned to no one is sub-
mitted fraudulently, or that a test assigned to a
candidate is duplicated, answered in two possible
ways, and both copies are submitted (i.e., cre-
ation/duplication of a test). It may happen as
well as that a submitted test is never marked be-
cause lost (i.e., loss of a legitimately submitted
and answered test).

Authentication and integrity properties are
expressed as predicates over E . Let c, q, a and
m range over ID , Q,A and M respectively. An
example of property is Marking Integrity, which
states that no mark has changed from marking to
notification, and it is written as follows:

NotifiedMarks ⊆
{(c,m) : (c, (q, a),m) ∈ MarkedTests}

Another property, Testing Integrity expresses
that all the exams that have been marked are
submitted for marking. It is as follows:

{(q, a) : (c, (q, a),m) ∈ MarkedTests)} ⊆
{(q, a) : (c, (q, a)) ∈ SubmittedTests}

Properties can be easily combined. For example,
Marking and Test Integrity is obtained by con-
junction from the previous properties:

NotifiedMarks ⊆
{(c,m) : (c, (q, a),m) ∈ MarkedTests

and (c, (q, a)) ∈ SubmittedTests}
(1)

Definition 2 serves well also to express prop-
erties of verifiability of a security property p. An
exam protocol is p-verifiable if it has a test for p,
that is, an algorithm testp that given any exam’s



execution E and some knowledge K (e.g., decryp-
tion keys) returns true if and only if p holds on
E . Formally, p-verifiability can be expressed as

∀E , testp(E ,K) iff E |= p (2)

where E |= p means that p holds on E .

A Refined Exam’s Abstract Model Dreier
et al.’s model partially serves the goal of this pa-
per but is too abstract to capture non-trivial no-
tions of privacy like the one we intend to advance
(see Definition 4). We need a formalism where to
express logs that can be encrypted, tests which
run over them, and knowledge about the exam in
clear which is gained from running the test. It is
in the interplay between these elements that our
notion of privacy-preserving verifiability emerges.

Thus, besides the abstract model E , which rep-
resents an exam logs always in clear text, we
consider also a concrete model, {E} that repre-
sents the actual and possibly encrypted logs of an
exam’s execution. A verifiability test is executed
on the concrete model {E}.
Definition 3. Let E and {E} be an abstract and
a concrete exam’s execution respectively, and let p
be a security property over E. Then, p is verifiable
if there exists a test for p, testp, that given some
knowledge K satisfies the following condition:

∀E , testp({E}),K) iff E |= p (3)

Any proof aiming at convincing that p is ver-
ifiable needs to clarify how the test that operates
on {E} is sound and complete with respect to the
validity of p on E .

The notion of privacy-preserving verifiability
is defined in respect to what a verifier, say v, can
learn about E by running testp({E},K). We are,
however, not interested to capture what v can
learn from the outputs of the test. Potentially,
a lot of information can be deduced by inference
attacks, see (Naveed et al., 2015), but the leaks
due to such attacks are outside the goal of this
paper. Rather, we intend to capture what v can
learn about E from the information in {E} he can
access while running testp({E}).

Let [{E}]p be the portion of {E} to which a
verifier needs to access to run testp({E}). Since
[{E}]p can be encrypted, v does not necessarily
learn about the exam’s execution E . It depends
on what v can do from knowing [{E}]p and K. If
we assume v be a passive but curious adversary,
and the learning process working at the symbolic
level of messages (i.e., not of bits), the deduc-
tion relation ` over messages defines the ability

to learn. It is the minimal relation that satisfies
the following equations:

mk, k
−1 ` m

(m,m′) ` m and m′

In the relation above, we abstract from symmet-
ric/asymmetric encryption: k−1 is the key to de-
crypt, whatever the paradigm of reference.

Definition 4. Let E be any execution of an exam
protocol and testp(·) a test for verifiability for a
property p. The test is privacy-preserving if by
running it v does not learn more about the exam
execution than he knows from the information he
is given to run the test. Formally:

{m : ([{E}]p ∪K) ` m} ∩ E = ([{E}]p ∪K) ∩ E

Definition 4 says that v should learn about E
no more than what he knows already from the
portion of the exam’s log he needs to access to
run the test and from the additional knowledge
he needs to know to run the test.

In Definition 4 we have slightly overloaded the
operator ∩. Since E is a tuple of sets it must be
considered applied over each element of the tuple
that is: (A,B)∩C = C∩(A,B) = (A∩C,B∩C).
Similarly the interpretation of ⊆ when applied to
tuple of sets, must be extended to tuple, that is:
(A,B) ⊆ (C,D) iff A ⊆ C and B ⊆ D.

Definition 5 (Privacy-Preserving Verifiability).
A protocol is privacy-preserving verifiable with re-
spect to a property p, if p is verifiable and admits a
verifiability test testp that is privacy-preserving.

4 Meaningfulness

Claim 1. Our notion of privacy-preserving ver-
ifiability is meaningful: it can be used to dis-
tinguish verifiable protocols that are privacy-
preserving from those which are not.

To prove the claim, we refer to an e-exam pro-
tocol whose verifiability (with respect to several
properties) has been established formally. The
protocol is called Remark!. The protocol is struc-
tured in the four typical phases of an exam. Its
message flow is recalled in Figure 1. In the chart
C is a candidate and E is an examiner. Only two
roles are presented for conciseness, but the pro-
tocol is supposed to work for all candidates and
all examiners and it is executed by them all. An
exam authority, A, helps the process.



Description The registration is the phase
where pseudonyms are generated to ensure a
double blind anonymity in testing and mark-
ing. Here, n exponential mixnets generate the
pseudonyms PkCi

for the registered candidate C.
The candidate already possesses a pair of pub-
lic/private keys, 〈PkC ,SkC〉 and uses the private
key to recognize its designated pseudonym among
the pseudonyms generated for all the candidates
and posted on a public bulletin board (BB, in Fig-
ure). Similarly, the mixnets generate pseudonyms
for the examiners. A zero-knowledge proof of
the generation is present on the bulletin board
as proof of correctness of the generation process.

At testing, the selected questions are signed by
the authority and encrypted with the pseudonym
of the candidates. The questions are posted
on the bulletin board from where the candi-
dates retrieve them. Then they answer the ques-
tions. In Figure, ques is the question and ans
is an answer. The candidate C prepares a tuple
〈ques, ans,PkC〉, which he signs with its private
key SkC . The tuple is then encrypts with the
public key of the authority and send to it. The
authority decrypts and re-encrypts the message
with the candidate pseudonym and publishes the
message on the bulletin board.

At marking the authority dispatches the tests
to the examiners. In Figure, A signs the answered
test and uses the pseudonyms of the examiner,
i.e., PkE , as encryption keys. He re-encrypts with
it the answered test and publishes it on the bul-
letin board. From there, similarly to what the
candidates did with the questions, E retrieves the
test, marks them (i.e., assigns a mark M), and
prepares a tuple with the answered tests signed
by the authority and the marking, which E signs
further with its secret key SkE . Encrypted this
with the public key of the authority, E returns
this message to the A who, in turn, decrypts the
marking and re-encrypts it with the pseudonym
of the candidate PkC .

At notification the candidates’ anonymity is
revoked and the marks can finally be registered.
The phase starts when the authority publishes all
the marks together. On request the mixnets re-
veal (on an authenticated encrypted channel like
one using TLS) the random values used to gener-
ate the pseudonyms (in Figure, rm, for C).

Security properties Remark! ensures several
authentication, anonymity, privacy and verifiabil-
ity properties. Here, we focus on verifiability,
in particular on universal verifiability. Univer-

sal means that anyone, even with no knowledge
about the protocol execution, can verify that a
specific property holds over the execution. A uni-
versal verifiability test should use only the public
data available on the bulletin board, plus pieces
of additional information which are explicitly pro-
vided for the test.

Remark! has been proven to be verifiable for
five properties (Dreier et al., 2014):

Registration: all accepted tests are submitted
by registered candidates.

Marking Correctness: all the marks at-
tributed by the examiners to the tests are
computed correctly.

Test Integrity : all and only accepted tests are
marked without any modification

Test Markedness: only the accepted tests are
marked without modification

Mark Integrity : all and only the marks asso-
ciated to the tests are assigned to the corre-
sponding candidates with no modifications

The properties are verifiable only if the exam
authority handles to the verifier some data af-
ter the exam has ended. For instance to ver-
ify Registration the manager must reveal the sig-
natures inside the receipts {SignSkA(H(TC)}PkC
posted on the bulletin board and the random
values used to encrypt the receipts. To ver-
ify Marking Correctness, the manager must re-
veal the marked exam-tests inside the evalua-
tions {SignSkE ,hE

(MC)}PkA , the random values
used to encrypt the marked tests, and the table
correct ans (not described in Figure 1) that de-
fines what is the mark given a question and an
answer; to verify Test Integrity and Test Marked-
ness, the manager must reveal the marked exam-
tests inside the evaluations, the random values
used to encrypt the marked tests, plus the data
disclosed for Registration; finally, to verify Mark
Integrity, the manager must reveal the examiners’
signatures on the marked exam-tests inside the
evaluations, and the random values used to en-
crypt the notifications {SignSkE ,hE

(MC)}PkC be-
fore posting them on the bulletin board.

Discussion Let us see where Remark!’s verifi-
ability fails to be privacy-preserving.

To verify Registration, Remark! prescribes
a test that takes the pseudonyms of the can-
didates signed by the mixnet, i.e., message
SignSKM

(PkC , hC), and the receipts of submis-
sions generated by the exam authority i.e., mes-
sages {SignSKA

(H(TC)}PkC . The test succeeds if



for each pseudonym there is a unique receipt of
submission. The verifier does not know any other
information about the execution of the exam
apart the pseudonyms and the hash version of
the tests. Hence, the registration test satisfies
Definition 4.

To verify Marking Correctness, the protocol
requires a test that inputs SignSKM

(PkC , hC),
the table correct ans, and the mark notifica-
tions signed by the examiner and published by
the exam authority {SignSKE ,hE

(MC)}PkA . The
test needs also the help of the exam authority
that decrypt these last messages, and reveals the
MC = 〈SignSKA

(PkE , TC),mark〉 which reveals
the pseudonym of the examiner who marked the
answers, the questions, and the mark. This test
does not satisfy Definition 4: the auditor learns
the questions, the answers, and the link between
candidate and examiner pseudonyms.

To verify Test Integrity, the protocol needs a
test that takes in SignSKM

(PkC , hC), the receipts
of submissions {SignSKA

(H(TC)}PkC , and the
mark notifications generated by the exam author-
ity in {SignSKE ,hE

(MC)}PkC . This test reveals
to the auditor questions, answers, and the link
between candidate and examiner pseudonyms,
which are leaked in the mark notifications, so it
does not satisfy Definition 4

To verify Test Markedness a test needs to in-
put the same data as in test integrity. The same
considerations outlined above applies for this test
and the test does not satisfy Definition 4.

To verify Mark Integrity, Remark! prescribes
a test that takes in the mark notifications
{SignSKE ,hE

(MC)}PkC and allows the auditor to
check if the marks that the exam authority as-
signed to the candidates (Register PkC ,mark)
coincide with the marks that the examiner
assigned to the candidates tests in MC =
〈SignSKA

(PkE , TC),mark〉. Once more, the
knowledge of questions, answers, and link be-
tween candidate and examiner pseudonyms is
leaked by MC , although those pieces of informa-
tion are not necessary to evaluate mark integrity.
Also this test does not respect Definition 4.

Overall, Remark! is privacy-preserving only
for registration verifiability.

5 Applicability

Remark! offers only one test of verifiability
that is privacy-preserving, Registration. It fails

to offer the same for the other tests of universal
verifiability. Here, we show how to make them
privacy-preserving. For reason of space we show
the technique only on the universal version of
Mark and Test Integrity Verifiability. We claim,
but we have to leave the proof of this claim as
future work, that we can apply the same idea of
solution to achieve privacy-preserving verifiability
for all the other verifiability tests.

To achieve privacy-preserving verifiability for
Mark and Test Integrity verifiability we modify
Remark!. We propose a version that relies on
Functional Encryption. We recall the basic of this
theory in § 5.1. We give the new protocol’s spec-
ification in § 5.2.

5.1 Functional Encryption

Functional Encryption (FE) is an encrypting
paradigm. It relies on the notion of FE scheme
(Boneh et al., 2011).

Definition 6. A FE scheme is a 4-tuple of func-
tions (Setup,KeyGen,Enc,Eval), where:

1. Setup(1λ, 1n) returns a pair of keys (Pk,Msk).
The first is a public key and the other a secret
master key. The keys depends on two parame-
ters: λ, a security parameter and n, a length.
They are polynomially related.

2. KeyGen(Msk, C) is a function that returns a
token, TokMsk

C . A token is a string that when
evaluated (see item 4, function Eval) on spe-
cific ciphertexts encrypted with Pk returns the
same output as the Boolean Circuit C (a
decider) would return if it were applied on
the corresponding plaintexts. We talk about
Boolean Circuits (Jukna, 2012) because the
“functionality” in “functional encryption” is
defined on this model of computation. Here,
C ∈ Cn, wheren Cn is the class of Boolean
Circuit on inputs long n bits.

3. Enc(Pk,m) encrypts the plaintext m ∈ {0, 1}n
with the public key Pk.

4. Eval(Pk,Ct, TokMsk
C ) is the function that pro-

cesses the token as we anticipated in item 2.
On input Ct = Enc(Pk,m) the function re-
turns C(m) that is the same boolean output
(accept/reject) as that of circuit C applied on
string m. The key Msk embedded in the token
is used retrieve the plaintext m from Ct. For
any other input than the specified Ct, Eval is
undefined and returns ⊥.

A FE scheme should be of course instantiated
cryptographically, but whatever implementation
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Figure 1: The message flow of Remark!

we chose it must satisfy two specific requirements:
correctness and secure indistinguishability.

The requirement of correctness says that the
functions in Definition 6 behave as described: for
all (Pk,Msk)← Setup(1λ, 1n), and all C ∈ Cn and
m ∈ {0, 1}n, and for TokMsk

C ← KeyGen(Msk, C)
and Ct ← Enc(Pk,m) then Eval(Pk,Ct, TokMsk

C )
= C(m). Otherwise it returns ⊥.

The requirement of secure indistinguishabil-
ity says that the scheme is “cryptographically se-
cure” against any active and strong enough adver-
sary (i.e., uniform probabilistic polynomial time
adversaries). Such an adversary, despite hav-
ing seen tokens TokMsk

C , cannot distinguish (with
a non-negligible advantage over pure guessing)

two ciphertexts Enc(Pk,m0) and Enc(Pk,m1) for
which C(m0) = C(m1).

5.2 Revising the Protocol

We modify Remark! and let it have a test for Uni-
versal Marking and Test Integrity (UMTI) verifi-
ability that is privacy-preserving according to our
Definition 4. We use a FE scheme to encrypt the
messages that the verifier needs to process when
running the test. From §3 we recall that the test
should decide the following predicate:

testUMTI ({E},K) iff (NotifiedMarks ⊆
{(c,m) : (c, (q, a),m) ∈ MarkedTests

and (c, (q, a)) ∈ SubmittedTests})
(4)



The test should succeed if and only if the set
of all notified marks to candidates is included in
the set of exams that have been marked for those
candidates and the exams marked should be those
that the have submitted for marking.

As we discussed in §4, in Remark! this test is
implemented by letting the verifier all the mes-
sages SignSKE ,hE

(MC) from which he can build
the sets as in Equation (4). By doing so the ver-
ifier gets to know the questions and answers and
their link with the candidate identifiers.

By resorting to a FE scheme we intend to
achieve a version of the test that implements
predicate (4) but without revealing the candi-
date’s questions and answers, which is a sufficient
condition to satisfy Definition 5. Precisely, Re-
mark! is modified as in Figure 2, showing only
the part of the protocol that has been modified.

We assume a trusted authority which we call
FE authority. It is not shown in Figure 2. Mes-
sages in step 5 and in step 8, in red in Figure 2,
are those which change. They are encrypted with
the FE’s public key. Msk. The authority can be
any party, such as one participating in the pro-
tocol or an external one, but must be trusted in
this particular task.

Precisely, in step 5 the exam authority en-
crypts with PkFE the signature of a test TC
that the candidate submitted for marking. It
also posts a digest of the same message, signed
with the candidate’s pseudonym. To avoid that
the message encrypted under PkFE and that en-
crypted under PkC hide two different values (i.e.,
y and TC such that H(TC) 6= y) we require a
non-interactive zero knowledge proof (NIZK) of
consistency, π in Figure. Similarly, in step 8 the
authority also encrypts with PkFE the marking it
has received from the examiner. Another NIZK
π′ is required as a proof of consistency.

5.3 Revising the Verifiability Test

Ciphertexts in steps 5 and in 8 will be used in
combination with the tokens that the FE author-
ity prepares for the verifier. The verifier needs
two type of tokens: they “implement” two func-
tions.

The first, function f1, embeds the public-keys
PkC and PkE and the mark mark to be verified.
It is supposed to input SignSkE ,hE

(MC), the mes-
sage in 8. After properly parsing the strings,
checks whether the mark, say mark ′, contained
in MC is equal to mark , checks the signature and

checks whether the Pk
′
C contained in TC (in turn,

contained in MC) equals PkC . It also verifies the
validity of the zero-knowledge proof π. If a check
fails, the function returns 0. If all checks succeed,
it returns 1. Function f1 is coded as follows:

Function f1[PkC ,mark ,PkE ](σ)
1. If Verify(σ,PkE) = 0 then Return 0
//verifies a signature, returns 0 on fails
2. Parse σ as SignSkE ,hE

(MC)

3. Parse MC as 〈SignSKA
(PkE , TC),mark ′〉

(get mark ′, TC)

4. Parse TC as 〈quest , ans,Pk
′
C〉

(get Pk′C)
5. If mark ′ 6= mark Return 0

6. If Pk′C 6= PkC Return 0
7. Return 1

The second function, f2, embeds the public-
key PkC and the message SignSkE ,hE

(MC). It
expects to input the second part of message 5,
SignSkC ,hC

(TC). It checks the signatures and
whether both messages refer to the same exam
test. The function returns 0 as soon as one check
fails, 1 otherwise. Function f2 is coded as follows:

Function f2[PkC ,SignSkE ,hE
(MC)](σ)

1. If Verify(σ,PkC) = 0 then Return 0
//verifies a signature, returns 0 on fails
2. Parse σ as SignSkC ,hC

(TC)
(get TC)

3. Parse MC as 〈SignSKA
(PkE , T

′
C),mark〉

(get T ′
C)

4. If TC 6= T ′
C Return 0

5. Return 1

The verifiability test uses two sets of tokens
of form TokMsk

f1[x]
and TokMsk

f2[x]
where x ranges over

the token embedded values.
The test then calls the function Eval over those

tokens to check whether the f1 and f2 holds on
the messages found on the bulletin board that
correspond the the messages that the verifier
needs to implement the test in Equation (4).

testUMTI ({E},K) first verifies whether for
each notified mark per candidate there exists at
least one message among those in step 8 that cor-
responds to the mark for a test of that candi-
date; if one is found the test continues and checks
whether there is at least one message among those
in step 5 that corresponds to that exam for that
candidate submitted for marking.

The test requires to know the markings
that have been notified to the candidates and
PKE the public key of the authority, so K =
{(PkC ,markC) : C ∈ IDrc}∪{PkE}. Formally the
test is implemented by the following algorithm:

function testUMTI ({E},K):



for (PkC ,markC) ∈ K do
Tok1 ← GetTok(f1[PkC ,markC ,PkE ])
for ({SignSkE ,hE

(MC)}PkFE , π) ∈ {E} do

b1 ← Eval(Tok1, {SignSkE ,hE
(MC)}PkFE);

if b1 then ExitLoop;

if b1 then
b′1 ← Verify(π for R);
Tok2←GetTok(f2[SignSkE ,hE

(MC)]);

for ({SignSkC ,hC
(TC)}PkFE , π

′)∈{E} do

b2 ← Eval(Tok2, {SignSkC ,hC
(TC))}PkFE);

if b2 then ExitLoop

if b2 then
b′2 ← Verify(π′ for R′);

return b1 · b′1 · b2 · b′2
GetTok is used to retrieve a specific token.

Here, we use the function’s embedded parame-
ters c to indicate which token is being requested.
However, the verifier does not necessarily know c
to perform such request, but he must be able to
indicate the token he needs e.g., by means of an
index. Relations R and R′ are so defined:

Relation R[PkC ,PkFE, H](x)
1. Parse x as

(Ct1 = {SignSKA
(y)}PkC ,

Ct2 = {SignSkE ,hE
(TC)}PkFE)

(get y and TC)
2. If H(TC) 6= y Return 0
3. Return 1

and

Relation R′[PkC ,PkFE](x)
1. Parse x as

(Ct1 = {SignSKE ,hE
(y)}PkC ,

Ct2 = {SignSkE ,hE
(TC)}PkFE)

(get y and TC)
2. If TC 6= y Return 0
3. Return 1

5.4 Discussion

We argue that testUMTI ({E},K) is privacy pre-
serving. By assumption the FE scheme satisfies
the indistinguishability security. Thus, a Dolev-
Yao attacker, given a ciphertext Ct encrypting a
message m and a token for a function f , can only
derive f(m). This holds also for a curious veri-
fier who observes the tokens for the two functions
f1 and f2. The crucial consideration is that, by
construction, such two functions return a Boolean
value and nothing about the messages that are
considered in our model (cf. Def. 1) of an exam’s
execution. Moreover, among the messages that
the verifier gets in input, precisely in K there is

Name Equation

Signature

getmess(sig(m, k)) = m

checksig(sig(m, k), spk(k)) = m

checksig(sig(m, ps pr(k,

exp(rce))), ps pub(pk(k), rce)) = m

ElGamal

decrypt(enc(m, pk(k), r), k) = m

decrypt(enc(m, ps pub(pk(k),

rce), r), ps pr(k, exp(rce))) = m

checkps(ps pub(pk(k), rce),

ps pr(k, exp(rce))) = true

FE f1

eval f1 (pk(k), ps pub(pk(k), rc),

ps pub(pk(k), re),mark,

enc(sig(sig(ps pub(pk(k), re),

(q, a, ps pub(pk(k), rc)), k),

mark, ps pr(k, exp(re))), pk(k))) = true

FE f2

eval f2 (pk(k), ps pub(pk(k), rc),

enc(sig((q, a, ps pub(pk(k), rc)),

ps pr(k, exp(rce))), pk(k))) = true

Table 1: Equational theory to model Remark!

nothing that allows him to decrypt other mes-
sages on the bulletin board. Actually, all the de-
cryption operations that the verifier needs are re-
alized within the function Eval. Therefore, it fol-
lows that testUMTI ({E},K) is privacy preserv-
ing according to Definition 4.

6 Formal Analysis

We prove formally that the verifiability test
is sound and complete and that the new proto-
col does satisfy the same security properties as
the original Remark!. That is because we in-
tend to get insurance than we achieve privacy-
preserving verifiability incrementally, on top of all
the authentication, integrity and privacy proper-
ties holding on the protocol and not of their ex-
penses.

We perform the analysis in Proverif (Blanchet,
2014). Our ProVerif model of the protocol is an
extension of the original Remark! model as it was
presented in (Dreier et al., 2014). The extension
mainly regards the following aspects:

• A ProVerif specification that reflects the new
protocol description.

• A new equational theory for the functional en-
cryption primitives defined in our protocol.

• A new UMTI verifiability test.
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Figure 2: A revision of Remark! using FE (only phases that have been changed).

The equational theory is illustrated in Table
1 to model the cryptographic primitives of the
protocol. The equations that model the digital
signature are rather standard in ProVerif.

ElGamal encryption is extended with equa-
tions that model pseudonyms as public keys: the
pseudonym, which also serves as test identifier,
can be generated using the function ps pub which
takes in a public key and a random exponent. In
fact, this function models the main feature of ex-
ponentiation mixnet. Function ps pr can be used
by a principal to decrypt or sign anonymous mes-
sages. The function takes in the private key of the
principal and the new generator published by the
mixnet. Function checkps allows a principal to
check whether a pseudonym is associated with the
principal’s private key. In practice, principals use
this function to identify their pseudonyms pub-
lished on the bulletin board. A public channel
models the bulletin board.

The equations that defines eval f1 and eval f2
model the two functional encryption primitives
f1 and f2 respectively. They return true if and
only if the corresponding plaintext version f1 and
f2 return true. Note that our equational theory
of functional encryption captures the property of
verifiable FE. Whenever the ciphertext is not in

the range of the encryption (i.e., it is not con-
sistent with the constructor enc), the evaluation
function eval fails as no rule can be applied. We
do not explicitly model the generation of the to-
ken: Setup and KeyGen are generated by a trust-
worthy authority. It follows that the only two
allowable functions are f1 and f2.

Verifiability. Recalling from Definition 3, a
protocol is p verifiable if it admits an algorithm
that decides p and the algorithm is sound and
complete. Soundness means that the verifiability-
test returns true only if the property holds. Com-
pleteness means that if the property holds, the
verifiability-test always returns true.

We use ProVerif’s correspondence assertions
to prove soundness. The verification strategy con-
sists of checking that the event OK emitted by
the verifiability-test when it is supposed to re-
turn true is always preceded by the event emit-
ted in the part of the code where the property
becomes satisfied. In case of Mark and Test In-
tegrity, this happens when the exam authority
assigns the mark to the candidate.

We resort to the unreachability of the event
KO, which is emitted by the verifiability-test when
it is supposed to return false, to prove complete-



ness. In this case, the ProVerif model enforces
only honest principals and prevents the attacker
to manipulate the input data of the verifiability-
test. In fact, a complete verifiability-test must
succeed if its input data is correct. ProVerif con-
firms that our protocol meets UMTI verifiability
and the verifiability-test is sound and complete 1.

We observe that ProVerif can only prove the
case in which only one entry on the bulletin board
is considered. Mark Integrity verifiability requires
that all and only the marks associated to the
tests are assigned to the corresponding candi-
dates. Thus, we need to iterate over all can-
didates who submitted their tests, but ProVerif
cannot do this automatically as it does not sup-
port loops. We resort on the manual induction
proofs provided by Dreier et al. (Dreier et al.,
2014) in which the base case is given by the au-
tomated result in ProVerif, and then generalise
such result to the general case with an arbitrary
number of candidates, tests, and marks. Those
proofs applies to the original Remark! as well
as to this new version. In fact, the assumption
that the auditor can check the correspondences of
the assigned entries to the marked entries on the
bulletin board does not change: each entry that
appears on the bulletin board at step 6 of the pro-
tocol can be matched to an entry that appears on
the bulletin board at step 8 of the protocol.

Authentication. We also prove in ProVerif
that the new protocol meets all the original au-
thentication properties of Remark! Since the new
protocol differs from Remark! only in messages 5
and 8, we can reuse the same authentication def-
initions advanced by Dreier et al. (Dreier et al.,
2014).

7 Discussion and Conclusion

In this pioneering work, we put forth a new
notion of security that entails features of both
verifiability and privacy. To illustrate the bene-
fits of our framework, we proved that our defi-
nition is meaningful enough to empower applica-
tions in the concrete domain of electronic exams
and in particular to an extension of an exam pro-
tocol that satisfies several verifiability properties
but which is not compliantly with our privacy-
preserving requirement.

1The full ProVerif code is available for review via
a request to the PC chairs

To achieve our goals, we employ the crypto-
graphic tool of Functional Encryption (FE). Only
with FE we can verify obliviously a property that
is global over the execution of the protocol, a
property that is about the data handled and pro-
cessed by several agents in the protocol’s run. In
making this choice we considered to obtained the
same effect with other tools, the most promising
be zero knowledge proofs, but, we claim, using
this tool would have required an authority that
looks at the execution and adds the proofs and
that interacts with the several protocol agent’s
asking them for other zero-knowledge proofs, so
changing too much how an exam should work.
This argument requires however a proof and we
plan to inquire into this question as future work.

We have not benchmarked the new protocol,
since this work’s focus is supposed to be mainly
theoretical. At current stage, our result is only
of theoretical relevance due to the high compu-
tational cost of FE for circuits that we assumed
and for this reason we recognize that functional
encryption may look as be an overkilling to some-
one. However, there is another feature of elec-
tronic exams that must be considered here. The
limited dimension of the an exam’s audiences and
the expected time of an exam’s notification makes
should make feasible implementations that rely
on time-inefficient encryption schemes. Compar-
ing with electronic voting, for instance, where a
whole country is involved and where a result is
nowadays expected be announced within the day,
for an exam the expected audiences is definitely
far more contained while waiting weeks is a per-
fectly acceptable time frame to get notified of
the result. We defer to further research about
implementing our privacy-preserving verifiability
notion efficiently.

We conclude by pointing to a new potential
interesting research direction, a future work for
us, and open problem to whom it may be inter-
ested: to study the relation between our notion
and that presented by Mödersheim et al. of α-β
privacy (Mödersheim et al., 2013). Were this cor-
relation proved, we could gain a straightforward
way to verify formally privacy-preserving verifi-
ability through the fact α-β privacy subsumes
static equivalence.
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