2,609 research outputs found

    {TRIX}: {L}ow-Skew Pulse Propagation for Fault-Tolerant Hardware

    Get PDF
    The vast majority of hardware architectures use a carefully timed reference signal to clock their computational logic. However, standard distribution solutions are not fault-tolerant. In this work, we present a simple grid structure as a more reliable clock propagation method and study it by means of simulation experiments. Fault-tolerance is achieved by forwarding clock pulses on arrival of the second of three incoming signals from the previous layer. A key question is how well neighboring grid nodes are synchronized, even without faults. Analyzing the clock skew under typical-case conditions is highly challenging. Because the forwarding mechanism involves taking the median, standard probabilistic tools fail, even when modeling link delays just by unbiased coin flips. Our statistical approach provides substantial evidence that this system performs surprisingly well. Specifically, in an "infinitely wide" grid of height~HH, the delay at a pre-selected node exhibits a standard deviation of O(H1/4)O(H^{1/4}) (≈2.7\approx 2.7 link delay uncertainties for H=2000H=2000) and skew between adjacent nodes of o(log⁡log⁡H)o(\log \log H) (≈0.77\approx 0.77 link delay uncertainties for H=2000H=2000). We conclude that the proposed system is a very promising clock distribution method. This leads to the open problem of a stochastic explanation of the tight concentration of delays and skews. More generally, we believe that understanding our very simple abstraction of the system is of mathematical interest in its own right

    Mid-Infrared Instrumentation for the European Extremely Large Telescope

    Full text link
    MIDIR is the proposed thermal/mid-IR imager and spectrograph for the European Extremely Large Telescope (E-ELT). It will cover the wavelength range of 3 to at least 20 microns. Designed for diffraction-limited performance over the entire wavelength range, MIDIR will require an adaptive optics system; a cryogenically cooled system could offer optimal performance in the IR, and this is a critical aspect of the instrument design. We present here an overview of the project, including a discussion of MIDIR's science goals and a comparison with other infrared (IR) facilities planned in the next decade; top level requirements derived from these goals are outlined. We describe the optical and mechanical design work carried out in the context of a conceptual design study, and discuss some important issues to emerge from this work, related to the design, operation and calibration of the instrument. The impact of telescope optical design choices on the requirements for the MIDIR instrument is demonstrated.Comment: for publication in SPIE Proceedings vol. 6692, Cryogenic Optical Systems and Instrumentation XII, eds. J.B. Heaney and L.G. Burriesci, San Diego, Aug 200

    Hybrid life-cycle assessment of algal biofuel production

    Full text link
    © 2014 Elsevier Ltd. The objective of this work is to establish whether algal bio-crude production is environmentally, economically and socially sustainable. To this end, an economic multi-regional input-output model of Australia was complemented with engineering process data on algal bio-crude production. This model was used to undertake hybrid life-cycle assessment for measuring the direct, as well as indirect impacts of producing bio-crude. Overall, the supply chain of bio-crude is more sustainable than that of conventional crude oil. The results indicate that producing 1. million tonnes of bio-crude will generate almost 13,000 new jobs and 4. billion dollars' worth of economic stimulus. Furthermore, bio-crude production will offer carbon sequestration opportunities as the production process is net carbon-negative

    Near-Optimal Distributed Maximum Flow

    Get PDF
    We present a near-optimal distributed algorithm for (1+o(1))(1+o(1))-approximation of single-commodity maximum flow in undirected weighted networks that runs in (D+n)⋅no(1)(D+ \sqrt{n})\cdot n^{o(1)} communication rounds in the \Congest model. Here, nn and DD denote the number of nodes and the network diameter, respectively. This is the first improvement over the trivial bound of O(n2)O(n^2), and it nearly matches the Ω~(D+n)\tilde{\Omega}(D+ \sqrt{n}) round complexity lower bound. The development of the algorithm contains two results of independent interest: (i) A (D+n)⋅no(1)(D+\sqrt{n})\cdot n^{o(1)}-round distributed construction of a spanning tree of average stretch no(1)n^{o(1)}. (ii) A (D+n)⋅no(1)(D+\sqrt{n})\cdot n^{o(1)}-round distributed construction of an no(1)n^{o(1)}-congestion approximator consisting of the cuts induced by O(log⁥n)O(\log n) virtual trees. The distributed representation of the cut approximator allows for evaluation in (D+n)⋅no(1)(D+\sqrt{n})\cdot n^{o(1)} rounds. All our algorithms make use of randomization and succeed with high probability

    On the Parity Problem in One-Dimensional Cellular Automata

    Full text link
    We consider the parity problem in one-dimensional, binary, circular cellular automata: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. It is easy to see that the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1). We then consider only odd lattices. We are interested in determining the minimal neighbourhood that allows the problem to be solvable for any initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can possibly solve the parity problem from arbitrary initial configurations. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and we formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Exploring the neural correlates of (altered) moral cognition in psychopaths

    Get PDF
    Abstract Research into the neurofunctional mechanisms of psychopathy has gathered momentum over the last years. Previous neuroimaging studies have identified general changes in brain activity of psychopaths. In an exploratory meta‐analysis, we here investigated the neural correlates of impaired moral cognition in psychopaths. Our analyses replicated general effects in the dorsomedial prefrontal cortex, lateral prefrontal cortex, fronto‐insular cortex, and amygdala, which have been reported recently. In addition, we found aberrant brain activity in the midbrain and inferior parietal cortex. Our preliminary findings suggest that alterations in both regions may represent more specific functional brain changes related to (altered) moral cognition in psychopaths. Furthermore, future studies including a more comprehensive corpus of neuroimaging studies on moral cognition in psychopaths should re‐examine this notion

    One More Awareness Gap? The Behaviour–Impact Gap Problem

    Get PDF
    Preceding research has made hardly any attempt to measure the ecological impacts of pro-environmental behaviour in an objective way. Those impacts were rather supposed or calculated. The research described herein scrutinized the ecological impact reductions achieved through pro-environmental behaviour and raised the question how much of a reduction in carbon footprint can be achieved through voluntary action without actually affecting the socio-economic determinants of life. A survey was carried out in order to measure the difference between the ecological footprint of “green” and “brown” consumers. No significant difference was found between the ecological footprints of the two groups—suggesting that individual pro-environmental attitudes and behaviour do not always reduce the environmental impacts of consumption. This finding resulted in the formulation of a new proposition called the BIG (behaviour–impact gap) problem, which is an interesting addition to research in the field of environmental awareness gaps

    Fully Sampled Maps of Ices and Silicates in Front of Cepheus A East with Spitzer

    Full text link
    We report the first fully sampled maps of the distribution of interstellar CO2 ices, H2O ices and total hydrogen nuclei, as inferred from the 9.7 micron silicate feature, toward the star-forming region Cepheus A East with the IRS instrument onboard the Spitzer Space Telescope. We find that the column density distributions for these solid state features all peak at, and are distributed around, the location of HW2, the protostar believed to power one of the outflows observed in this star-forming region. A correlation between the column density distributions of CO2 and water ice with that of total hydrogen indicates that the solid state features we mapped mostly arise from the same molecular clumps along the probed sight lines. We therefore derive average CO2 ice and water ice abundances with respect to the total hydrogen column density of X(CO2)_ice~1.9x10^-5 and X(H2O)_ice~7.5x10^-5. Within errors, the abundances for both ices are relatively constant over the mapped region exhibiting both ice absorptions. The fraction of CO2 ice with respect to H2O ice is also relatively constant at a value of 22% over that mapped region. A clear triple-peaked structure is seen in the CO2 ice profiles. Fits to those profiles using current laboratory ice analogs suggest the presence of both a low-temperature polar ice mixture and a high-temperature methanol-rich ice mixture along the probed sightlines. Our results further indicate that thermal processing of these ices occurred throughout the sampled region.Comment: 26 pages, 8 figures, accepted for publication in Ap

    Chloroplast cold-resistance is mediated by the acidic domain of the RNA binding protein CP31A

    Get PDF
    Chloroplast RNA metabolism is characterized by long-lived mRNAs that undergo a multitude of post-transcriptional processing events. Chloroplast RNA accumulation responds to environmental cues, foremost light and temperature. A large number of nuclear-encoded RNA-binding proteins (RBPs) are required for chloroplast RNA metabolism, but we do not yet know how chloroplast RBPs convert abiotic signals into gene expression changes. Previous studies showed that the chloroplast ribonucleoprotein 31A (CP31A) is required for the stabilization of multiple chloroplast mRNAs in the cold, and that the phosphorylation of CP31A at various residues within its N-terminal acidic domain (AD) can alter its affinity for RNA in vitro. Loss of CP31A leads to cold sensitive plants that exhibit bleached tissue at the center of the vegetative rosette. Here, by applying RIP-Seq, we demonstrated that CP31A shows increased affinity for a large number of chloroplast RNAs in vivo in the cold. Among the main targets of CP31A were RNAs encoding subunits of the NDH complex and loss of CP31A lead to reduced accumulation of ndh transcripts. Deletion analyses revealed that cold-dependent RNA binding and cold resistance of chloroplast development both depend on the AD of CP31A. Together, our analysis established the AD of CP31A as a key mediator of cold acclimation of the chloroplast transcriptome

    Low Energy Office: Design and Evaluation

    Get PDF
    The new government building with ca. 14.000 m2 gross floor area in Innsbruck/Tirol was designed as a low energy office building. As little technical installations as possible and as much room comfort as achievable: These were the two goals, set by the builder and user. An interdisciplinary team of architects, HVAC-planners and energy designers had already developed an integrated concept for the architectural competition. This was altered and adapted during the realization phase of the building. Detailed building simulations were used to determine the interactions of building, climate and users. The integration of three glass atria into the concept, unheated and naturally ventilated, was one of the main challenges in this planning process. These atria serve as thermal buffers and use the passive gains of solar energy. Only the internal areas are ventilated mechanically. The facades were optimized to combine daylighting and protection against high solar irradiation. Reduction of the cooling load, night ventilation of the atria and groundwater cooling in the offices secure moderate temperatures without any mechanical cooling. Despite a dense utilization the building offers attractive workplaces with a comfortable room climate. The energy consumption for heating in the first fully measured year was 35 kWh/m2, which is very close to the prediction. The consumption of primary energy is low also. The measured atria air temperatures comply in general with the simulated ones. A direct comparison of simulation and measurement is planned for the future
    • 

    corecore