6,737 research outputs found

    The effect of different opacity data and chemical element mixture on the Petersen diagram

    Full text link
    The Petersen diagram is a frequently used tool to constrain model parameters such as metallicity of radial double-mode pulsators. In this diagram the period ratio of the radial first overtone to the fundamental mode, P_1/P_0, is plotted against the period of the fundamental mode. The period ratio is sensitive to the chemical composition as well as to the rotational velocity of a star. In the present study we compute stellar pulsation models to demonstrate the sensitivity of the radial period ratio to the opacity data (OPAL and OP tables) and we also examine the effect of different relative abundances of heavy elements. We conclude that the comparison with observed period ratios could be used successfully to test the opacity data.Comment: 5 pages, 5 figures, 1 table; to be published in the Proceedings of the Conference 'Unsolved Problems in Stellar Physics', Cambridge, 2-6 July 200

    Requirements for contractility in disordered cytoskeletal bundles

    Full text link
    Actomyosin contractility is essential for biological force generation, and is well understood in highly organized structures such as striated muscle. Additionally, actomyosin bundles devoid of this organization are known to contract both in vivo and in vitro, which cannot be described by standard muscle models. To narrow down the search for possible contraction mechanisms in these systems, we investigate their microscopic symmetries. We show that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. This suggests a role for filament buckling in the contraction of these bundles, consistent with recent experimental results on reconstituted actomyosin bundles.Comment: 10 pages, 6 figures; text shortene

    Temporal variability of disturbances: is this important for diversity and structure of marine fouling assemblages?

    Get PDF
    Natural communities are constantly changing due to a variety of interacting external processes and the temporal occurrence and intensity of these processes can have important implications for the diversity and structure of marine sessile assemblages. In this study, we investigated the effects of temporal variation in a disturbance regime, as well as the specific timing of events within different regimes, on the composition and diversity of marine subtidal fouling assemblages. We did this in a multi-factorial experiment using artificial settlement tiles deployed at two sites on the North East coast of England. We found that although there were significant effects of disturbances on the composition of assemblages, there were no effects of either the variation in the disturbance regime or the specific timing of events on the diversity or assemblage composition at either site. In contrast to recent implications we conclude that in marine fouling assemblages, the variability in disturbance regimes (as a driving force) is unimportant, while disturbance itself is an important force for structuring robust ecosystems

    Dynamical tunnelling with ultracold atoms in magnetic microtraps

    Get PDF
    The study of dynamical tunnelling in a periodically driven anharmonic potential probes the quantum-classical transition via the experimental control of the effective Planck's constant for the system. In this paper we consider the prospects for observing dynamical tunnelling with ultracold atoms in magnetic microtraps on atom chips. We outline the driven anharmonic potentials that are possible using standard magnetic traps, and find the Floquet spectrum for one of these as a function of the potential strength, modulation, and effective Planck's constant. We develop an integrable approximation to the non-integrable Hamiltonian and find that it can explain the behaviour of the tunnelling rate as a function of the effective Planck's constant in the regular region of parameter space. In the chaotic region we compare our results with the predictions of models that describe chaos-assisted tunnelling. Finally we examine the practicality of performing these experiments in the laboratory with Bose-Einstein condensates.Comment: V1: 12 pages, 10 figures. V2: 14 pages, 12 figures, significantly updated in response to referee report. Some figures are lower quality to reduce file sizes, please contact submitter for high quality versions. V3: Introduction rewritten, but mostly unchanged; updated to published versio

    The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments

    Full text link
    The GERDA and Majorana experiments will search for neutrinoless double-beta decay of germanium-76 using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both GERDA and Majorana.Comment: 4 pages, 1 figure, proceedings for TAUP201

    Comment on ``Critical Behavior in Disordered Quantum Systems Modified by Broken Time--Reversal Symmetry''

    Full text link
    In a recent Letter [Phys. Rev. Lett. 80, 1003 (1998)] Hussein and Pato employed the maximum entropy principle (MEP) in order to derive interpolating ensembles between any pair of universality classes in random matrix theory. They apply their formalism also to the transition from random matrix to Poisson statistics of spectra that is observed for the case of the Anderson-type metal-insulator transition. We point out the problems with the latter procedure.Comment: 1 page in PS, to appear in PRL Sept. 2

    Re-structuring of marine communities exposed to environmental change

    Get PDF
    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research

    Dynamics of Fermionic Four-Wave Mixing

    Full text link
    We study the dynamics of a beam of fermions diffracted off a density grating formed by fermionic atoms in the limit of a large grating. An exact description of the system in terms of particle-hole operators is developed. We use a combination of analytical and numerical methods to quantitatively explore the Raman-Nath and the Bragg regimes of diffraction. We discuss the limits in diffraction efficiency resulting from the dephasing of the grating due the distribution of energy states occupied by the fermions. We propose several methods to overcome these limits, including the novel technique of ``atom echoes''.Comment: 8 pages, 7 figure
    • …
    corecore