26 research outputs found

    Impact of chars and readily available carbon on soil microbial respiration and microbial community composition in a dynamic incubation experiment

    Get PDF
    The carbonisation of biomass and organic residues is discussed as an opportunity to store stabilised carbon compounds in soil and to reduce mineralisation and the emission of CO2. In this study, pyrolysis char (600 °C, 30 min) and hydrothermal carbonisation char (HTC char; 210 °C, 23 bar, 8 h), both derived from maize silage, were investigated in a short-term incubation experiment of soil mixtures with or without readily available carbon (glucose) in order to reveal impacts on soil microbial respiration and community composition. In contrast to pyrolysis char, the addition of HTC char increased respiration and enhanced the growth of fungi. The addition of glucose to soil-char mixtures containing either pyrolysis or HTC char induced an additional increase of respiration, but was 35% and 39% lower compared to soil-glucose mixtures, respectively, providing evidence for a negative priming effect. No significant difference was observed comparing the soil mixtures containing pyrolysis char + glucose and HTC char + glucose. The addition of glucose stimulated the growth of most microbial taxa under study, especially of Actinobacteria at the expense of fungi. Adding pyrolysis or HTC char to soil induced a decline of all microbial taxa but did not modify the microbial community structure significantly. Addition of pyrolysis or HTC char in combination with glucose however, increased the abundance of Actinobacteria and reduced the relative abundance of Acidobacteria and Betaproteobacteria while fungi were further increased in case of HTC char. We conclude that both chars hold the potential to bring about specific impacts on soil microbial activities and microbial community structure, and that they may compensate the variations induced by the addition of readily available carbon

    Pre- and Post-Harvest Infection of Pasteurized Pickles with Fungi and Their Pectinolytic Potential to Soften the Product

    Get PDF
    Fungi and their enzymes have long been thought to cause the softening of pasteurized gherkins; however, the exact fungal species and timing of contamination are unknown. Ready-to-sell pickle jars and blossoms of growing gherkins were inoculated with DNA-sequenced fungi isolated from rotting gherkins to cause softening at various stages of production. Ready-to-sell gherkins inoculated with Fusarium oxysporum, Fusarium equiseti, Galactomyces geotrichum, Mucor circinelloides, Mucor hiemalis, Mucor fragilis, Plectosphaerella cucumerina, Alternaria sp., and Cladosporium sp. indicated a measurable texture reduction after pasteurization and 6 months of storage at room temperature. No texture changes were observed in gherkins infected during the growth phase. The fungi M. hiemalis, M. fragilis, and G. geotrichum tolerated the acidic-saline (approx. pH 4) environment in the jar for several days, thus the pectinolytic enzymes of these candidates were tested for heat and pH resistance. Although the measured endo-Polygalacturonase (PG) of M. fragilis had its optimum activity at pH < 4, all fungal enzymes were inactivated within 3 min at 80 °C corresponding to the pasteurization heat. Our study shows that conventionally occurring fungi and their enzymes have the potential to induce softening in pickles. Softening by these fungi is unlikely due to post- or pre-harvest contamination without any other influences.European agricultural fund for rural development (EAFRD)Peer Reviewe

    Contrasting effects of biochar on N2O emission and N uptake at different N fertilizer levels on a temperate sandy loam

    Get PDF
    Biochar has been frequently suggested as an amendment to improve soil quality and mitigate climate change. To investigate the optimal management of nitrogen (N) fertilization, we examined the combined effect of biochar and N fertilizer on plant N uptake and N2O emissions in a cereal rotation system in a randomized two-factorial field experiment on a sandy loam soil in Brandenburg, Germany. The biochar treatment received 10 Mg ha− 1 wood-derived biochar in September 2012. Four levels of N fertilizer, corresponding to 0, 50%, 100%, 130% of the recommended fertilizer level, were applied in winter wheat (Triticum aestivum L.)) and winter rye (Secale cereal L.) in 2013 and 2014 followed by the catch crop oil radish (Raphanus sativus L. var. oleiformis). Biomass and N uptake of winter wheat and winter rye were significantly affected by the level of N fertilizer but not by biochar. For N uptake of oil radish an interaction effect was observed for biochar and N fertilizer. Without applied fertilizer, 39% higher N uptake was found in the presence of biochar, accompanied by higher soil NH4+ content and elevated cumulative CO2 emissions. At 130% of the recommended fertilizer level, 16% lower N uptake and lower cumulative N2O emissions were found in the biochar-mediated treatment. No significant change in abundance of microbial groups and nosZ gene were observed. Our results highlight that biochar can have a greenhouse gas mitigation effect at high levels of N supply and may stimulate nutrient uptake when no N is supplied

    Antagonistic Potential of Fluorescent Pseudomonads Colonizing Wheat Heads Against Mycotoxin Producing Alternaria and Fusaria

    Get PDF
    Natural control of phytopathogenic microorganisms is assumed as a priority function of the commensal plant microbiota. In this study, the suitability of fluorescent pseudomonads in the phyllosphere of crop plants as natural control agents was evaluated. Under field conditions, ears of winter wheat were found to be colonized with high consistency and at a high density by pseudomonads at the late milk dough stage. Isolates of these bacteria were evaluated for their potential to protect the plants from phytopathogenic Alternaria and Fusarium fungi. More Pseudomonas isolates were antagonistically active against alternaria than against fusaria in the dual culture test. The alternaria responded species-specifically and more sensitively to bacterial antagonism than the strain-specific reacting fusaria. A total of 110 randomly selected Pseudomonas isolates were screened for genes involved in the biosynthesis of the antibiotics 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid, pyoluteorin, and pyrrolnitrin. The key gene for production of the phloroglucinol was found in none of these isolates. At least one of the genes, encoding the biosynthesis of the other antibiotics was detected in 81% of the isolates tested. However, the antagonistic effect found in the dual culture assay was not necessarily associated with the presence of these antibiotic genes. Wheat grains as natural substrate were inoculated with selected antagonistic Pseudomonas isolates and Alternaria and Fusarium strains, respectively. The fungal growth was only slightly delayed, but the mycotoxin production was significantly reduced in most of these approaches. In conclusion, the distribution of phytopathogenic fungi of the genera Alternaria and Fusarium in the field is unlikely to be inhibited by naturally occurring pseudomonads, also because the bacterial antagonists were not evenly distributed in the field. However, pseudomonads can reduce the production of Alternaria and Fusarium mycotoxins in wheat grains and thus have the potential to improve the crop quality

    A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma

    Get PDF
    Interleukin-6 (IL6) plays a central role in multiple myeloma pathogenesis and confers resistance to corticosteroid-induced apoptosis. We therefore evaluated the efficacy and safety of siltuximab, an anti-IL6 monoclonal antibody, alone and in combination with dexamethasone, for patients with relapsed or refractory multiple myeloma who had ≥2 prior lines of therapy, one of which had to be bortezomib-based. Fourteen initial patients received siltuximab alone, 10 of whom had dexamethasone added for suboptimal response; 39 subsequent patients were treated with concurrent siltuximab and dexamethasone. Patients received a median of 4 prior lines of therapy, 83% were relapsed and refractory, and 70% refractory to their last dexamethasone-containing regimen. Suppression of serum C-reactive protein levels, a surrogate marker of IL6 inhibition, was demonstrated. There were no responses to siltuximab but combination therapy yielded a partial (17%) + minimal (6%) response rate of 23%, with responses seen in dexamethasone-refractory disease. The median time to progression, progression-free survival and overall survival for combination therapy was 4.4, 3.7 and 20.4 months, respectively. Haematological toxicity was common but manageable. Infections occurred in 57% of combination-treated patients, including ≥grade 3 infections in 18%. Further study of siltuximab in modern corticosteroid-containing myeloma regimens is warranted, with special attention to infection-related toxicity

    Assessment of growth suppression in apple production with replant soils

    No full text
    Apple replant disease (ARD) is a specific apple-related form of soil fertility loss due to unidentified causes and is also known as soil fatigue. The effect typically appears in monoculture production sites and leads to production decreases of up to 50%, even though the cultivation practice remains the same. However, an indication of replant disease is challenged by the lack of specification of the particular microbial group responsible for ARD. The objective of this study was to establish an algorithm for estimating growth suppression in orchards irrespective of the unknowns in the complex causal relationship by assessing plant-soil interaction in the orchard several years after planting. Based on a comparison between no-replant and replant soils, the Alternaria group (Ag) was identified as a soil-fungal population responding to replant with abundance. The trunk cross-sectional area (CSA) was found to be a practical and robust parameter representing below-ground and above-ground tree performance. Suppression of tree vigour was therefore calculated by dividing the two inversely related parameters, Q = ln(Ag)/CSA, as a function of soil-fungal proportions and plant responses at the single-tree level. On this basis, five clusters of tree vigour suppression (Q) were defined: (1) no tree vigour suppression/vital (0%), (2) escalating (−38%), (3) strong (−53%), (4) very strong (−62%), and (5) critical (−74%). By calculating Q at the level of the single tree, trees were clustered according to tree vigour suppression. The weighted frequency of clusters in the field allowed replant impact to be quantified at field level. Applied to a case study on sandy brown, dry diluvial soils in Brandenburg, Germany, the calculated tree vigour suppression was −46% compared to the potential tree vigour on no-replant soil in the same field. It is highly likely that the calculated growth suppression corresponds to ARD-impact. This result is relevant for identifying functional changes in soil and for monitoring the economic effects of soil fatigue in apple orchards, particularly where long-period crop rotation or plot exchange are improbable

    Application of multiple regression and neural network approaches for landscape-scale assessment of soil microbial biomass

    No full text
    Abstract Previous soil surveys across the north-east German lowland have reported significant correlations of soil microbial biomass (SMB) contents and organic carbon and total nitrogen contents as well as texture. Using these data sets obtained from 89 arable sites along a regional-scale transect, a linear full-factorial regression model and a neural network model were constructed and evaluated for landscapescale assessment of SMB. The validation by means of an additional data set consisting of 30 long-term soil observation sites located in the federal state of Brandenburg was within a confidence range of 95%. Using existing models from other regions with our data sets resulted in underestimation of SMB, while using data sets from another region with our model led to overestimation of SMB. It was concluded that a linear full-factorial regression model approach, as well as neural network modelling are promising tools for the prediction of SMB at the landscape scale but need to be validated for the respective region.

    Softening of Processed Plant Virus Infected Cucumis sativus Fruits

    Get PDF
    Texture softening of pickled cucumbers does not meet consumers’ quality expectations and leads to economic losses. The factor(s) triggering this phenomenon is still unknown. We investigated the importance of plant viruses such as Cucumber green mottle mosaic tobamovirus (CGMMV) and Zucchini yellow mosaic potyvirus (ZYMV) in the context of softening of pickles. Cucumber plants (Cucumis sativus) were infected by mechanical inoculation, grown under greenhouse conditions and tested positive for the viral infection by ELISA. The severity of virus infection was reflected in yield and symptom expression. Histological and morphological alterations were observed. All fruits were pasteurized, separately stored in jars and subjected to texture measurements after four, six and 12 months. CGMMV-infections were asymptomatic or caused mild symptoms on leaves and fruit, and texture quality was comparable to control. At the same time, fruits of ZYMV-infected plants showed severe symptoms like deformations and discoloration, as well as a reduction in firmness and crunchiness after pasteurization. In addition, histological alterations were detected in such fruits, possibly causing textural changes. We conclude that plant viruses could have a considerable influence on the firmness and crunchiness of pickled cucumbers after pasteurization. It is possible that the severity of symptom expression has an influence on texture properties.European Agricultural Fund for Rural DevelopmentPeer Reviewe
    corecore