235 research outputs found
Imaging Hyperpolarized Pyruvate and Lactate after Blood-Brain Barrier Disruption with Focused Ultrasound
Item does not contain fulltex
New enzyme based process direction to prevent wool shrinking without substantial tensile strength loss
In this paper a new enzymatic process
direction is described for obtaining machine
washable wool with acceptable quality. In general, application of protease enzyme technology in wool processing results in considerable loss of tensile strength by diffusion of the enzyme into the interior of wool fibers. To overcome this disadvantage
enzymatic activity has been more targeted
to the outer surface of the scales by
improving the susceptibility of the outer surface scale protein for proteolytic degradation. This has been realized by a pretreatment of wool with hydrogen peroxide at alkaline pH in the presence of high concentrations of salt
Efficient Inhibition of Collagen-Induced Platelet Activation and Adhesion by LAIR-2, a Soluble Ig-Like Receptor Family Member
LAIR-1 (Leukocyte Associated Ig-like Receptor -1) is a collagen receptor that functions as an inhibitory receptor on immune cells. It has a soluble family member, LAIR-2, that also binds collagen and can interfere with LAIR-1/collagen interactions. Collagen is a main initiator for platelet adhesion and aggregation. Here, we explored the potential of soluble LAIR proteins to inhibit thrombus formation in vitro. LAIR-2/Fc but not LAIR-1/Fc inhibited collagen-induced platelet aggregation. In addition, LAIR-2/Fc also interfered with platelet adhesion to collagen at low shear rate (300 s−1; IC50 = 18 µg/ml) and high shear rate (1500 s−1; IC50 = 30 µg/ml). Additional experiments revealed that LAIR-2/Fc leaves interactions between collagen and α2β1 unaffected, but efficiently prevents binding of collagen to Glycoprotein VI and von Willebrand factor. Thus, LAIR-2/Fc has the capacity to interfere with platelet-collagen interactions mediated by Glycoprotein VI and the VWF/Glycoprotein Ib axis
Models for Prediction of Factor VIII Half-Life in Severe Haemophiliacs: Distinct Approaches for Blood Group O and Non-O Patients
BACKGROUND: Von Willebrand factor (VWF) is critical for the in vivo survival of factor VIII (FVIII). Since FVIII half-life correlates with VWF-antigen pre-infusion levels, we hypothesized that VWF levels are useful to predict FVIII half-life. METHODOLOGY: Standardized half-life studies and analysis of pre-infusion VWF and VWF-propeptide levels were performed in a cohort of 38 patients with severe haemophilia A (FVIII <1 IU/ml), aged 15-44 years. Nineteen patients had blood-group O. Using multivariate linear regression-analysis (MVLR-analysis), the association of VWF-antigen, VWF-propeptide, age and body-weight with FVIII half-life was evaluated. PRINCIPAL FINDINGS: FVIII half-life was shorter in blood-group O-patients compared to non-O-patients (11.5+/-2.6 h versus 14.3+/-3.0 h; p = 0.004). VWF-antigen levels correlated with FVIII half-life considerably better in patients with blood-group non-O than O (Pearson-rank = 0.70 and 0.47, respectively). Separate prediction models evolved from MVLR-analysis for blood-group O and non-O patients, based on VWF-antigen and VWF/propeptide ratio. Predicted half-lives deviated less than 3 h of observed half-life in 34/38 patients (89%) or less than 20% in 31/38 patients (82%). CONCLUSION: Our approach may identify patients with shorter FVIII half-lives, and adapt treatment protocols when half-life studies are unavailable. In addition, our data indicate that survival of FVIII is determined by survival of endogenous VWF rather than VWF levels per se
In Vivo Analysis of the Role of O-Glycosylations of Von Willebrand Factor
The objective of this project was to study the function of O-glycosylations in von Willebrand factor (VWF) life cycle. In total, 14 different murine Vwf cDNAs mutated on one or several O-glycosylations sites were generated: 9 individual mutants, 2 doublets, 2 clusters and 1 mutant with all 9 murine glycosylation sites mutated (Del-O-Gly). We expressed each mutated cDNA in VWF deficient-mice by hydrodynamic injection. An immunosorbent assay with Peanut Agglutinin (PNA) was used to verify the O-glycosylation status. Wild-type (WT) VWF expressed by hepatocytes after hydrodynamic injection was able to bind PNA with slightly higher affinity than endothelial-derived VWF. In contrast, the Del-O-Gly VWF mutant did not bind PNA, demonstrating removal of O-linked glycans. All mutants displayed a normal multimeric pattern. Two mutants, Del-O-Gly and T1255A/T1256A, led to expression levels 50% lower than those induced by WT VWF and their half-life in vivo was significantly reduced. When testing the capacity of each mutant to correct the bleeding time of VWF-deficient mice, we found that S1486A, T1255A, T1256A and the doublet T1255A/T1256A were unable to do so. In conclusion we have shown that O-glycosylations are dispensable for normal VWF multimerization and biosynthesis. It also appears that some O-glycosylation sites, particularly the T1255 and T1256 residues, are involved in the maintenance of VWF plasma levels and are essential for normal haemostasis. As for the S1486 residue, it seems to be important for platelet binding as demonstrated in vitro using perfusion experiments
The Interaction between Factor H and Von Willebrand Factor
Complement factor H (fH) is a plasma protein that regulates activation of the alternative pathway, and mutations in fH are associated with a rare form of thrombotic microangiopathy (TMA), known as atypical hemolytic uremic syndrome (aHUS). A more common TMA is thrombotic thrombocytopenic purpura, which is caused by the lack of normal ADAMTS-13-mediated cleavage of von Willebrand factor (VWF). We investigated whether fH interacts with VWF and affects cleavage of VWF. We found that factor H binds to VWF in plasma, to plasma-purified VWF, and to recombinant A1 and A2 domains of VWF as detected by co-immunoprecipitation (co-IP) and surface plasmon resonance assays. Factor H enhanced ADAMTS-13-mediated cleavage of recombinant VWF-A2 as determined by quantifying the cleavage products using Western-blotting, enhanced cleavage of a commercially available fragment of VWF-A2 (FRETS-VWF73) as determined by fluorometric assay, and enhanced cleavage of ultralarge (UL) VWF under flow conditions as determined by cleavage of VWF-platelet strings attached to histamine stimulated endothelial cells. Using recombinant full-length and truncated fH molecules, we found that the presence of the C-terminal half of fH molecule is important for binding to VWF-A2 and for enhancing cleavage of the A2 domain by ADAMTS-13. We conclude that factor H binds to VWF and may modulate cleavage of VWF by ADAMTS-13
Restricting detergent protease action to surface of protein fibres by chemical modification
Due to their excellent properties, such as
thermostability, activity over a broad range of pH and
efficient stain removal, proteases from Bacillus sp. are
commonly used in the textile industry including industrial
processes and laundry and represent one of the most
important groups of enzymes. However, due to the action
of proteases, severe damage on natural protein fibres such
as silk and wool result after washing with detergents
containing proteases. To include the benefits of proteases in
a wool fibre friendly detergent formulation, the soluble
polymer polyethylene glycol (PEG) was covalently
attached to a protease from Bacillus licheniformis. In
contrast to activation of PEG with cyanuric chloride (50%)
activation with 1,1′-carbonyldiimidazole (CDI) lead to
activity recovery above 90%. With these modified
enzymes, hydrolytic attack on wool fibres could be
successfully prevented up to 95% compared to the native
enzymes. Colour difference (ΔE) measured in the three dimensional colour space showed good stain removal
properties for the modified enzymes. Furthermore, half-life
of the modified enzymes in buffers and commercial
detergents solutions was nearly twice as high as those of
the non-modified enzymes with values of up to 63 min. Out
of the different modified proteases especially the B.
licheniformis protease with the 2.0-kDa polymer attached
both retained stain removal properties and did not
hydrolyse/damage wool fibres
- …