57 research outputs found

    Presence of inflammatory proteins S100A8 and S100A9 in a giant intracranial aneurysm after flow diverter treatment

    Get PDF
    Contains fulltext : 204236.pdf (publisher's version ) (Open Access

    Liposomal targeting of glucocorticoids to the inflamed synovium inhibits cartilage matrix destruction during murine antigen-induced arthritis

    No full text
    Encapsulation of glucocorticoids into long-circulating liposomes provides targeting of these drugs to the inflamed synovium in experimental arthritis and thereby strongly improves their therapeutic index. The goal of this study was to evaluate the effect and mechanisms of intravenous liposomal delivery of prednisolone phosphate (Lip-PLP) on protease mediated cartilage destruction during murine antigen-induced arthritis (AIA). Mice treated with a single injection of Lip-PLP showed a pronounced suppression of synovial immune cell infiltration compared to control, PBS-treated mice. Liposomal PLP also significantly suppressed interleukin 1beta (3.6 fold) in the synovium, but not in the blood serum. Furthermore, expression of the proteases MMP-3, -9, -13 and -14 and ADAMTS-4 and -5 was suppressed by Lip-PLP in the synovium, but not within the articular cartilage of the femur and tibia, demonstrating the specific action of Lip-PLP on the synovium. Lip-PLP is phagocytosed by macrophages in vitro and suppresses their expression of IL-1beta and MMPs after LPS activation. Moreover, Lip-PLP suppresses destruction of the cartilage matrix during AIA mediated by active MMPs and ADAMTS, as assessed by immunostaining of their respective neoepitopes VDIPEN and NITEGE in various cartilage layers of the knee joint. Conclusion: liposomal delivery of glucocorticoids protects against cartilage matrix destruction during experimental arthritis by inhibiting protease expression and activity in the inflamed synovium

    High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis?

    No full text
    Contains fulltext : 165658.pdf (publisher's version ) (Closed access)There is increasing evidence that low-density lipoprotein (LDL) cholesterol plays a role in the pathology of OA. Specifically, oxidized LDL (oxLDL), which has been shown to play an essential role during development of atherosclerosis, could be involved in processes such as synovial inflammation, cartilage destruction and bone deformations. OxLDL can activate synovial cells such as macrophages, endothelial cells and synovial fibroblasts, resulting in release of growth factors, MMP and pro-inflammatory cytokines. In this review article, we discuss the role of LDL and oxLDL in OA joint pathology and share our viewpoint of possible mechanisms by which these proteins could influence the development and progression of OA. The proposed theory could provide insight into the aetiopathology of OA and give rise to new potential treatments

    Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-beta

    Get PDF
    Contains fulltext : 154821.PDF (publisher's version ) (Open Access)SCOPE: Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. METHODS AND RESULTS: Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-beta, and that anti-TGF-beta antibodies blocked Th17 differentiation. CONCLUSION: Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect
    corecore