105 research outputs found

    Baculovirus Per Os Infectivity Factors Form a Complex on the Surface of Occlusion-Derived Virus

    Get PDF
    Five highly conserved per os infectivity factors, PIF1, PIF2, PIF3, PIF4, and P74, have been reported to be essential for oral infectivity of baculovirus occlusion-derived virus (ODV) in insect larvae. Three of these proteins, P74, PIF1, and PIF2, were thought to function in virus binding to insect midgut cells. In this paper evidence is provided that PIF1, PIF2, and PIF3 form a stable complex on the surface of ODV particles of the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV). The complex could withstand 2% SDS-5% ß-mercaptoethanol with heating at 50°C for 5 min. The complex was not formed when any of the genes for PIF1, PIF2, or PIF3 was deleted, while reinsertion of these genes into AcMNPV restored the complex. Coimmunoprecipitation analysis independently confirmed the interactions of the three PIF proteins and revealed in addition that P74 is also associated with this complex. However, deletion of the p74 gene did not affect formation of the PIF1-PIF2-PIF3 complex. Electron microscopy analysis showed that PIF1 and PIF2 are localized on the surface of the ODV with a scattered distribution. This distribution did not change for PIF1 or PIF2 when the gene for PIF2 or PIF1 protein was deleted. We propose that PIF1, PIF2, PIF3, and P74 form an evolutionarily conserved complex on the ODV surface, which has an essential function in the initial stages of baculovirus oral infectio

    Localization of viral antigens in leaf protoplasts and plants by immunogold labelling

    Get PDF
    This thesis describes the application of an immunocytochemical technique, immunogold labelling, new in the light and electron microscopic study of the plant viral infection. In Chapter 1 the present state of knowledge of the plant viral infection process, as revealed by insitu studies of infected cells, is briefly reviewed. Until now, light and electron microscopic studies have merely described morphological changes in cells and tissue as a result of viral infection, but have failed to provide information on the functional role of these structures in the viral infection process and their association with viral components. A common cytopathological feature of many different plant viruses seems to be the induction of membranous vesicles or membranous bodies, which have been implicated in viral replication. However, only in a few cases some evidence was obtained with regard to the Intracellular location of viral replication and the association of replication and membranes. Available cytochemical techniques have apparently failed to provide a tool for the identification of virus particles and virus-encoded proteins within cellular structures. The Impact of a suitable detection techniques to elucidate the molecular processes of viral replication and transport insitu is obvious, as it would link findings obtained by invitro experiments to the events observed in the cell.Immunogold labelling seems to provide such a tool for the tracing of antigens in light and electron microscopic preparations of biological specimens. Gold particles are excellent markers for electron microscopy, because of their high electron density which makes them appear as black dots In EM preparations. Furthermore, by a simple silver staining following gold labelling, viral antigens can be dete cted in semi-thin sections with the light microscope. The application of immunogold labelling for the light and electron microscopic localization of antigens is described in Chapters 2, 3, 4, 5, 6 and 7.In Chapter 2 the preparation of homodisperse suspensions of colloidal gold particles is described. By adsorption of protein A to the surface of the gold particles, a marker (protein A-gold, pAg) is obtained which can be used for labelling antigen-antibody complexes. The specificity of the technique was demonstrated by gold labelling of antibodies bound to plant viruses in mixed suspensions of two viruses. Each virus was labelled using its homologous antiserum and pAg, and no significant cross-reaction with the other virus occurred. Simultaneous identification of two different viruses (CCMV and SBMV) with similar morphological appearance was achieved by double labelling with pAg-complexes containing gold particles of 7 and 16 nm, respectively. Immunogold labelling of viral antigens in suspension has been applied to distinguish between different serologically related viruses like strains of TMV (Pares and Whitecross, 1982), and the potyvirus sugarcane mosaic virus and maize dwarf mosaic virus (Alexander and Toler, 1986; 1985). A clear advantage of the immunogold labelling over conventional decoration of antigens is that the discrete gold particles allow quantification of the results.The immunogold labelling of viral antigen in ultrathin sections of infected protoplasts is described in Chapter 3. Best results were obtained when the protoplasts were only mildly fixed with aldehydes, dehydrated and finally embedded in Lowicryl K4M at -30°C. The antigenicity of viral coat protein was well preserved. A disadvantage of the method is the limited preservation of cell structures, especially membranes due to extraction of lipids. Weibull etal. (1983) reported that approximately 50% of the lipid content of cells may be extracted, despite the low temperatures used in the Lowicryl K4M embedding procedure. Ashford etal. (1986) questioned the low temperature character of Lowicryl embedding, and found that during polymerization of the resin, temperature rises due to the exothermic nature of the reaction. With plant tissue (not protoplasts), low temperature dehydration and infiltration of the embedding resin must be prolonged, to allow sufficient penetration of the chemicals through the thick walls surrounding the plant cells, and this may result in even more extraction than reported by Weibull and colleagues. Rapid dehydration in ethanol and infiltration of plant tissue with a polar resin like LR White at ambient temperatures, therefore, seems to be a good alternative (Newman etal. , 1983; Causton, 1984; Newman and Jasani, 1984).Light microscopic localization of viral antigen in semi-thin sections of LR White embedded plant tissue is described in Chapter 6. CCMV was successfully localized in petiolules of systemically inoculated cowpea plants by immunogold labelling and subsequent silver staining (immunogold/silver staining: IGSS). The silver stain could be observed in the light microscope by brightfield, darkfield and phase-contrast illumination. Most sensitive detection, however, was obtained with epi- illumination using polarized light (epipolarization microscopy). Combining epipolarization illumination with brightfield illumination allowed the simultaneous observation of silver stain and cell morphology.Immunogold labelling and IGSS in combination with appropriate fixation and embedding of biological specimens, appear to be efficient and simple techniques for the insitu identification and localization of antigens, with many advantages over other immunochemical and cytochemical techniques, like ferritin- labelling, peroxidase-anti-peroxidase, immunofluorescence and autoradiography, which have only incidentally been used in plant virus research. Recently, Patterson and Verduin (1987) have reviewed the literature on the use of immunogold labelling in animal and plant virology, showing numerous fields of applications and discussing progress made in virus research. With respect to the technique the authors rightly concluded that immunogold labelling is a flexible technique with little limitation for the improvement of existing assays and the development of new ones.Using immunogold labelling to identify and localize virus particles and coat protein, CCMV- infection in cowpea protoplasts was studied as function of the infection time. Observations with regard to virus entry into protoplasts are reported in Chapter 3. Upon inoculation aggregates of virus particles were observed attached to the plasmamembrane, or sometimes penetrating the plasmamembrane at places where the membrane appeared to be damaged. Virus was also found inside vesicles formed by invagination of the plasmamembrane. These vesicles with inoculum-virus particles were stable over long periods of time. Large vesicles (vacuoles) containing viral antigen were also detected at 24 h post-inoculation in protoplasts which were not infected by CCMV.The mechanism by which plant viruses enter their host cells is still disputed (Shaw, 1986). Passage of the plasmalemma by endocytosis was suggested by Takebe (1975), and through pores or lesions by Burgess etal. (1973) and Watts etal. (1981). Our observations do not favour endocytosis to be the mechanism of virus entry leading to infection of the protoplasts as virus containing vesicles are stable. Recently, Roenhorst etal. (1988) presented data supporting a mechanism of virus entry by initial physical association of virus particles with the protoplast membrane and subsequent invasion of virus particles through membrane lesions. Such a mechanism may be also applicable to the cytoplasmic extrusions observed by Laidlaw (1987) after puncturing plant epidermal cells. The author suggested that virus particles may adsorb to the plasmalemma covering the extrusions, which are then withdrawn into the cell. Invasion of whole particles through membrane lesions may then be followed by a uncoating and initial translation (cotranslational disassembly) at the cytoplasmic ribosomes as suggested by Wilson (1985).Ultrastructure of RNA-inoculated protoplasts was studied in sections of aldehyde- and osmium-fixed protoplasts (Chapter 4). Cytological alterations attributed to virus infection consisted of dilation of the endoplasmic reticulum (ER) and the formation of vesicles early in infection. Distended ER and vesicles seemed to form a kind of membranous area in the cytoplasm. In protoplasts fixed and embedded in Lowicryl K4M newly synthesized virus particles or coat protein were first localized in restricted areas of the cytoplasm at 6-9 h post-inoculation. The rough appearance of the cytoplasm in these areas suggested the presence of membranous structures like observed in osmium-fixed protoplasts. However, due to poor membrane preservation in Lowicryl embedded material this could not be proven. Within one protoplast several of these labelled areas were identified. At later stages of infection viral antigen was located throughout the cytoplasm, but also in the nucleus and in particular the nucleolus. No viral antigen was detected in or specifically associated with chloroplasts, mitochondria, microbodies and vacuoles. The specificity of gold labelling was demonstrated by quantification of the labelling density on sections of infected and non-infected protoplasts. These results indicate that CCMV coat protein synthesis and virus assembly take place in the cytoplasm of plant cells, but the involvement of cellular structures, in particular membranes, remains to be established. Protein synthesis and virus assembly may occur in certain restricted sites (compartments) in the cytoplasm possibly formed by the membranous bodies. Compartmentalization of the cytoplasm, creating different environments in the cell, may explain the occurrence of both disassembly and assembly in the same cell, and furthermore account for the phenomenon of specific assembly of viral RUA and homologous coat protein in cells infected with two related viruses like CCMV and BMV (Sakai etal. , 1983 ; Zaitlin and Hull, 1987). Whether RNA-replication also occurs in the same location as coat protein synthesis and virus assembly could be established by localization of non-structural virus encoded proteins involved in viral replication. However, antisera against these products of the CCMV-genome were not available. The function of CCMV coat protein or virus in the nucleus and especially the nucleolus is not known. Coat protein may have an affinity for ribosomal proteins and/or fulfill some functional role in the viral replication. Kim 1977 described the occurrence of filamentous inclusions (FI) in the nucleus often associated with the nucleolus. These FI were not found in the nuclei of cowpea protoplasts (this study) or tobacco protoplasts (Burgess etal. , 1974), but may be formed later in the infection by excess coat protein. Bancroft etal. (1969) showed the ability of CCMV-coat protein to form narrow tubules under specific conditions. The (FI) described by Kim (1977) may represent this type of coat protein aggregation, although the chemical composition of the (FI) is not yet known.In Chapter 5 preliminary observations are reported on the localization of sites of CPMV replication in cowpea protoplasts, by in situ detection of coat proteins and non-structural proteins involved in viral replication and proteolytic processing. With regard to virus entry and subsequent locations of inoculum virus inside vesicles, similar phenomena were observed as in infection with CCMV. Infection of CPMV generates large inclusion bodies in the cytoplasm, consisting of membranous vesicles with fibrillary material and adjoining amorphous electron-dense material which have been observed as early as 12 h post- inoculation. Virus particles and/or coat protein were first detected 24 h after inoculation throughout the entire cytoplasm and in between the membranous vesicles and electron dense material. The 24K, 170K and their precursor proteins were exclusively localized in the electron dense material and not in association with the membranous vesicles or any other location in the cell. These results show that the electron-dense material consists at least in part of CPMV-encoded non-structural proteins and may represent a site for accumulation of non-functional proteins. The membranous vesicles have been implicated in viral RNA synthesis (Goldbach and Van Kammen, 1985). The failure to detect non- structural proteins in association with these membranes may be explained by either a low concentration of these proteins at the site of replication or by extraction of these proteins during the fixation and embedding procedure, despite the low temperature.With IGSS the distribution of CCMV in cowpea plants was monitored at different times after systemic inoculation according to Dawson and Sehlegel (1976) (Chapters 6 and 7). No virus was detected at the time of temperature shift (t=0) in petiolule and leaves of plants subjected to 3 days of differential temperature treatment. Virus was first localized in phloem parenchyma cells of petiolule and veins at t=3 h and from there it spread to neighbouring tissues. Twenty four hours after systemic inoculation virus was located in the phloem, bundle sheath, cortex, but also in the cambium and some xylem cells. These results show that CCMV is transported from the inoculated primary leaves to the secondary leaves through the phloem, apparently following the route of metabolites. This finding is in agreement and further supports the generally accepted concept of plant virus long-distance transport through phloem. tissue (Matthews, 1982; Atabekov and Dorokhov, 1984). The failure to detect CCMV in differentiated sieve elements may indicate that the form in which the infectious entity is transported is another than virus particles (Atabekov and Dorokhov, 1984), or that the amount of virus transported through the sieve elements is below detectable levels. The true character of the synchrony of infection of leaf mesophyll cells obtained by differential temperature treatment is disputed. Infection of mesophyll tells may have been accomplished after shifting the plants to higher temperature by fast transport of infectious particles from the vascular tissue, as was also suggested by Dorokhov etal. (1981).For the first time a suitable method for localization of antigens is available, which can be routinely applied for both light and electron microscopic study of the plant viral infection process. The application of the gold labelling technique in the localization of viral structural and non-structural proteins has been demonstrated, using CCMV- and CPMV-infections of plant cells as model system.With regard to the technique, future work must be done on the improvement of the preservation of cellular structures, especially membranes, as these appear only poorly in Lowicryl embedded plant tissue even with dehydration, infiltration and polymerization at low temperatures. Alternatives, may be found in cryofixation and cryosectioning or freeze-substitution techniques.With regard to the study of the plant viral infection process, the localization of virus-encoded proteins involved in replication and transport, but also the localization of plant viral nucleic acids by insitu hybridization, will contribute to the understanding of the mechanisms underlying these events. New biochemical techniques like the production of infectious transcripts from cloned viral cDNA (Ahlquist etal. 1984) enabling genetic manipulation of the viral genome, and integration of plant viral genes into the plant genome (Gardner etal. , 1984; Abel etal. , 1986) will supply future model systems for the study of virus-host interactions

    Studies of the silencing of Baculovirus DNA binding protein

    Get PDF
    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovirus-infected cells increased expression of LEF-3, LEF-4, and P35. In contrast, expression of the structural genes coding for P39 and polyhedrin was suppressed while expression of genes coding for P10 and GP64 was unaffected. In the absence of DBP, viral DNA replication sites were formed, indicating replication of viral DNA. Electron microscopy studies, however, revealed a loss of formation of polyhedra and virus envelopment, suggesting that the primary role of DBP is viral formation rather than viral DNA replication

    A new silverleaf inducing biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) Ms, indigenous for the islands of the South West Indian Ocean

    Get PDF
    Following the first detection of tomato yellow leaf curl virus (TYLCV) from Réunion (700 km east of Madagascar) in 1997 and the upsurge of Bemisia tabaci (Gennadius) on vegetable crops, two genetic types of B. tabaci were distinguished using RAPD¿PCR and cytochrome oxidase I (COI) gene sequence comparisons. One type was assigned to biotype B and the other was genetically dissimilar to the populations described elsewhere and was named Ms, after the Mascarenes Archipelago. This new genetic type forms a distinct group that is sister to two other groups, one to which the B biotype is a member and one to which the Q biotype belongs. The Ms biotype is thought to be indigenous to the region as it was also detected in Mauritius, the Seychelles and Madagascar. Both B and Ms populations of B. tabaci induced silverleaf symptoms on Cucurbita sp., and were able to acquire and transmit TYLCV. Taken together these results indicate that the Ms genetic type should be considered a new biotype of B. tabac

    Characterization of novel components of the baculovirus per os infectivity factor complex

    Get PDF
    Baculovirus occlusion-derived virus (ODV) infects insect midgut cells under alkaline conditions, a process mediated by highly conserved per os infectivity factors (PIFs), P74 (PIF0), PIF1, PIF2, PIF3, PIF4, and PIF5 (ODV-E56). Previously, a multimolecular complex composed of PIF1, PIF2, PIF3, and P74 was identified which was proposed to play an essential role during ODV entry. Recently, more proteins have been identified that play important roles in ODV oral infectivity, including PIF4, PIF5, and SF58, which might work in concert with previously known PIFs to facilitate ODV infection. In order to understand the ODV entry mechanism, the identification of all components of the PIF complex is crucial. Hence, the aim of this study was to identify additional components of the PIF complex. Coimmunoprecipitation (CoIP) combined with proteomic analysis was used to identify the components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex. PIF4 and P95 (AC83) were identified as components of the PIF complex while PIF5 was not, and this was confirmed with blue native PAGE and a second CoIP. Deletion of the pif4 gene impaired complex formation, but deletion of pif5 did not. Differentially denaturing SDS-PAGE further revealed that PIF4 forms a stable complex with PIF1, PIF2, and PIF3. P95 and P74 are more loosely associated with this complex. Three other proteins, AC5, AC68, and AC108 (homologue of SF58), were also found by the proteomic analysis to be associated with the PIF complex. Finally the functional significance of the PIF protein interactions is discussed

    Identification of distinct steps during tubule formation by the movement of protein of Cowpea mosaic virus

    Get PDF
    The movement protein (MP) of Cowpea mosaic virus (CPMV) forms tubules through plasmodesmata in infected plants thus enabling virus particles to move from cell to cell. Localization studies of mutant MPs fused to GFP in protoplasts and plants identified several functional domains within the MP that are involved in distinct steps during tubule formation. Coinoculation experiments and the observation that one of the C-terminal deletion mutants accumulated uniformly in the plasma membrane suggest that dimeric or multimeric MP is first targeted to the plasma membrane. At the plasma membrane the MP quickly accumulates in peripheral punctuate spots, from which tubule formation is initiated. One of the mutant MPs formed tubules containing virus particles on protoplasts, but could not support cell-to-cell movement in plants. The observations that this mutant MP accumulated to a higher level in the cell than wt MP and did not accumulate in the cell wall opposite infected cells suggest that breakdown or disassembly of tubules in neighbouring, uninfected cells is required for cell-to-cell movement
    • …
    corecore