829 research outputs found

    Gradual sub-lattice reduction and a new complexity for factoring polynomials

    Get PDF
    We present a lattice algorithm specifically designed for some classical applications of lattice reduction. The applications are for lattice bases with a generalized knapsack-type structure, where the target vectors are boundably short. For such applications, the complexity of the algorithm improves traditional lattice reduction by replacing some dependence on the bit-length of the input vectors by some dependence on the bound for the output vectors. If the bit-length of the target vectors is unrelated to the bit-length of the input, then our algorithm is only linear in the bit-length of the input entries, which is an improvement over the quadratic complexity floating-point LLL algorithms. To illustrate the usefulness of this algorithm we show that a direct application to factoring univariate polynomials over the integers leads to the first complexity bound improvement since 1984. A second application is algebraic number reconstruction, where a new complexity bound is obtained as well

    A Lattice- Based Public-Key Cryptosystem

    Full text link

    Lattice sieving and trial division

    Full text link

    The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer

    Get PDF
    A quantum computer can efficiently find the order of an element in a group, factors of composite integers, discrete logarithms, stabilisers in Abelian groups, and `hidden' or `unknown' subgroups of Abelian groups. It is already known how to phrase the first four problems as the estimation of eigenvalues of certain unitary operators. Here we show how the solution to the more general Abelian `hidden subgroup problem' can also be described and analysed as such. We then point out how certain instances of these problems can be solved with only one control qubit, or `flying qubits', instead of entire registers of control qubits.Comment: 16 pages, 3 figures, LaTeX2e, to appear in Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum Communication (Springer-Verlag

    Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    Get PDF
    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analyzed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated.Comment: 3 pages, 4 figures, revte

    Pattern formation driven by nematic ordering of assembling biopolymers

    Full text link
    The biopolymers actin and microtubules are often in an ongoing assembling/disassembling state far from thermal equilibrium. Above a critical density this leads to spatially periodic patterns, as shown by a scaling argument and in terms of a phenomenological continuum model, that meets also Onsager's statistical theory of the nematic--to--isotropic transition in the absence of reaction kinetics. This pattern forming process depends much on nonlinear effects and a common linear stability analysis of the isotropic distribution of the filaments is often misleading. The wave number of the pattern decreases with the assembling/disassembling rate and there is an uncommon discontinuous transition between the nematic and the periodic state.Comment: 4 pages, 3 figure

    Construction of Self-Dual Integral Normal Bases in Abelian Extensions of Finite and Local Fields

    Get PDF
    Let F/EF/E be a finite Galois extension of fields with abelian Galois group Γ\Gamma. A self-dual normal basis for F/EF/E is a normal basis with the additional property that TrF/E(g(x),h(x))=ήg,hTr_{F/E}(g(x),h(x))=\delta_{g,h} for g,h∈Γg,h\in\Gamma. Bayer-Fluckiger and Lenstra have shown that when char(E)≠2char(E)\neq 2, then FF admits a self-dual normal basis if and only if [F:E][F:E] is odd. If F/EF/E is an extension of finite fields and char(E)=2char(E)=2, then FF admits a self-dual normal basis if and only if the exponent of Γ\Gamma is not divisible by 44. In this paper we construct self-dual normal basis generators for finite extensions of finite fields whenever they exist. Now let KK be a finite extension of \Q_p, let L/KL/K be a finite abelian Galois extension of odd degree and let \bo_L be the valuation ring of LL. We define AL/KA_{L/K} to be the unique fractional \bo_L-ideal with square equal to the inverse different of L/KL/K. It is known that a self-dual integral normal basis exists for AL/KA_{L/K} if and only if L/KL/K is weakly ramified. Assuming p≠2p\neq 2, we construct such bases whenever they exist
    • 

    corecore