73 research outputs found
Questioning the existence of a unique ground state structure for Si clusters
Density functional and quantum Monte Carlo calculations challenge the
existence of a unique ground state structure for certain Si clusters. For Si
clusters with more than a dozen atoms the lowest ten isomers are close in
energy and for some clusters entropic effects can change the energetic ordering
of the configurations. Isotope pure configurations with rotational symmetry and
symmetric configurations containing one additional isotope are disfavored by
these effects. Comparisons with experiment are thus difficult since a mixture
of configurations is to be expected at thermal equilibrium
Structure and formation energy of carbon nanotube caps
We present a detailed study of the geometry, structure and energetics of
carbon nanotube caps. We show that the structure of a cap uniquely determines
the chirality of the nanotube that can be attached to it. The structure of the
cap is specified in a geometrical way by defining the position of six pentagons
on a hexagonal lattice. Moving one (or more) pentagons systematically creates
caps for other nanotube chiralities. For the example of the (10,0) tube we
study the formation energy of different nanotube caps using ab-initio
calculations. The caps with isolated pentagons have an average formation energy
0.29+/-0.01eV/atom. A pair of adjacent pentagons requires a much larger
formation energy of 1.5eV. We show that the formation energy of adjacent
pentagon pairs explains the diameter distribution in small-diameter nanotube
samples grown by chemical vapor deposition.Comment: 8 pages, 8 figures (gray scale only due to space); submitted to Phys.
Rev.
Temperature driven to phase-transformation in Ti, Zr and Hf from first principles theory combined with lattice dynamics
Lattice dynamical methods used to predict phase transformations in crystals
typically deal with harmonic phonon spectra and are therefore not applicable in
important situations where one of the competing crystal structures is unstable
in the harmonic approximation, such as the bcc structure involved in the hcp to
bcc martensitic phase transformation in Ti, Zr and Hf. Here we present an
expression for the free energy that does not suffer from such shortcomings, and
we show by self consistent {\it ab initio} lattice dynamical calculations
(SCAILD), that the critical temperature for the hcp to bcc phase transformation
in Ti, Zr and Hf, can be effectively calculated from the free energy difference
between the two phases. This opens up the possibility to study quantitatively,
from first principles theory, temperature induced phase transitions.Comment: 4 pages, 3 figure
Recommended from our members
Energetics of crystalline silicon dioxide-silicon (SiO2/Si) interfaces
We consider the interface between a (100) silicon surface and several naturally occurring crystalline silicon dioxide (SiO{sub 2}-silica) polymorphs: {alpha}-quartz, {beta}-cristobalite, tridymite, and keatite. Using a classical empirical potential, we compute the strain energy required for epitaxy for each silica structure. Tridymite is the least energetically favorable epitaxial phase, followed by {alpha}-quartz, then {beta}-cristobalite, while the most energetically favorable phase is keatite. We discuss the implications of this for epitaxial growth, and the crystalline to amorphous transition within atomically thin silica layers
Electronic structure of periodic curved surfaces -- topological band structure
Electronic band structure for electrons bound on periodic minimal surfaces is
differential-geometrically formulated and numerically calculated. We focus on
minimal surfaces because they are not only mathematically elegant (with the
surface characterized completely in terms of "navels") but represent the
topology of real systems such as zeolites and negative-curvature fullerene. The
band structure turns out to be primarily determined by the topology of the
surface, i.e., how the wavefunction interferes on a multiply-connected surface,
so that the bands are little affected by the way in which we confine the
electrons on the surface (thin-slab limit or zero thickness from the outset).
Another curiosity is that different minimal surfaces connected by the Bonnet
transformation (such as Schwarz's P- and D-surfaces) possess one-to-one
correspondence in their band energies at Brillouin zone boundaries.Comment: 6 pages, 8 figures, eps files will be sent on request to
[email protected]
First-principles calculation of intrinsic defect formation volumes in silicon
We present an extensive first-principles study of the pressure dependence of
the formation enthalpies of all the know vacancy and self-interstitial
configurations in silicon, in each charge state from -2 through +2. The neutral
vacancy is found to have a formation volume that varies markedly with pressure,
leading to a remarkably large negative value (-0.68 atomic volumes) for the
zero-pressure formation volume of a Frenkel pair (V + I). The interaction of
volume and charge was examined, leading to pressure--Fermi level stability
diagrams of the defects. Finally, we quantify the anisotropic nature of the
lattice relaxation around the neutral defects.Comment: 9 pages, 9 figure
Thermally activated reorientation of di-interstitial defects in silicon
We propose a di-interstitial model for the P6 center commonly observed in ion
implanted silicon. The di-interstitial structure and transition paths between
different defect orientations can explain the thermally activated transition of
the P6 center from low-temperature C1h to room-temperature D2d symmetry. The
activation energy for the defect reorientation determined by ab initio
calculations is 0.5 eV in agreement with the experiment. Our di-interstitial
model establishes a link between point defects and extended defects,
di-interstitials providing the nuclei for the growth.Comment: 12 pages, REVTeX, Four figures, submitted to Phys. Rev. Let
A fourfold coordinated point defect in silicon
Due to their technological importance, point defects in silicon are among the
best studied physical systems. The experimental examination of point defects
buried in bulk is difficult and evidence for the various defects usually
indirect. Simulations of defects in silicon have been performed at various
levels of sophistication ranging from fast force fields to accurate density
functional calculations. The generally accepted viewpoint from all these
studies is that vacancies and self interstitials are the basic point defects in
silicon. We challenge this point of view by presenting density functional
calculations that show that there is a new fourfold coordinated point defect in
silicon that is lower in energy
Recommended from our members
Atomic scale models of Ion implantation and dopant diffusion in silicon
We review our recent work on an atomistic approach to the development of predictive process simulation tools. First principles methods, molecular dynamics simulations, and experimental results are used to construct a database of defect and dopant energetics in Si. This is used as input for kinetic Monte Carlo simulations. C and B trapping of the Si self- interstitial is shown to help explain the enormous disparity in its measured diffusivity. Excellent agreement is found between experiments and simulations of transient enhanced diffusion following 20-80 keV B implants into Si, and with those of 50 keV Si implants into complex B-doped structures. Our simulations predict novel behavior of the time evolution of the electrically active B fraction during annealing
- …