8 research outputs found

    A Shape Sensing Mechanism driven by Arp2/3 and cPLA 2 licenses Dendritic Cells for Migration to Lymph Nodes in Homeostasis

    No full text
    Motile cells such as immune and cancer cells experience large deformation events that result from the physical constraints they encounter while migrating within tissues or circulating between organs. It has become increasingly clear that these cells can survive and adapt to these changes in cell shape using dedicated shape sensing pathways. However, how shape sensing impacts their function and fate remains largely unknown. Here we identify a shape sensing mechanism that couples cell motility to expression of CCR7, the chemokine receptor that guides immune cells to lymph nodes. We found that this mechanism is controlled by the lipid metabolism enzyme cPLA 2 , requires an intact nuclear envelop and exhibits an exquisitely sensitive activation threshold tuned by ARP2/3 and its inhibitor Arpin. We further show that shape sensing through the ARP2/3-cPLA 2 axis controls Ikkβ-NFκB-dependent transcriptional reprogramming of dendritic cells, which instructs them to migrate to lymph nodes in an immunoregulatory state compatible with their homeostatic tolerogenic function. These results highlight that the cell shape changes experienced by motile cells evolving within the complex environment of tissues can dictate their behavior and fate

    Has increasing the age for child passengers to wear child restraints improved the extent to which they are used? Results from an Australian focus group and survey study

    No full text
    Acknowledgement that many children in Australia travel in restraints that do not offer them the best protection has led to recent changes in legislation such that the type of restraint for children under 7 years is now specified. This paper reports the results of two studies (observational; focus group/ survey) carried out in the state of Queensland to evaluate the effectiveness of these changes to the legislation. Observations suggested that almost all of the children estimated as aged 0-12 years were restrained (95%). Analysis of the type of restraint used for target-aged children (0-6 year olds) suggests that the proportion using an age-appropriate restraint has increased by an estimated 7% since enactment of the legislation. However, around 1 in 4 children estimated as aged under 7 years were using restraints too large for good fit. Results from the survey and focus group suggested parents were supportive of the changes in legislation. Non-Indigenous parents agreed that the changes had been necessary, were effective at getting children into the right restraints, were easy to understand as well as making it clear what restraint to use with children. Moreover, they did not see the legislation as too complicated or too hard to comply with. Indigenous parents who participated in a focus group also regarded the legislation as improving children’s safety. However, they identified the cost of restraints as an important barrier to compliance. In summary, the legislation appears to have had a positive effect on compliance levels and on raising parental awareness of the need to restrain children child-specific restraints for longer. However, it would seem that an important minority of parents transition their children into larger restraints too early for optimal protection. Intervention efforts should aim to better inform these parents about appropriate ages for transition, especially from forward facing childseats. This could potentially be through use of other important transitions that occur at the same age, such as starting school. The small proportion of parents who do not restrain their children at all are also an important community sector to target. Finally, obtaining restraints presents a significant barrier to compliance for parents on limited incomes and interventions are needed to address this

    Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective

    No full text
    corecore