14 research outputs found

    Digital Holography and Cell Studies

    Get PDF
    Digital holography microscopy (DHM) has developed into a broad field, and one of all the interesting applications is to study cells without staining, labeling or in any other way affecting them. Both fixed and living, dying or dead cells can be studied. The first DHM images showing living cells were published in 2004 and 2005 (Carl et al. 2004, Marquet et al. 2005), making this field of research rather new. Digital holography makes it possible to easily measure cell properties that previously have been very difficult to study, such as cell thickness and volume (Marquet et al. 2005, Mölder et al. 2008). Two of the major advantages of DHM is the 3-D imaging possibility and measurements over time. Digital holography has ben used to study several types of cells, such as nerve cells, red blood cells, stem cells and cancer cells (Emery et al. 2007, Kemper et al. 2006, Langehanenberg et al. 2009) . It has also been applied for studies of cell proliferation, cell movement, sub-cellular structures and cell morphology (Kemper et al. 2009, Yu et al. 2009). Both 2-D and 3-D cell movement can be determined ( Langehanenberg et al. 2009). Even cell viability status can be determined using DHM. Interestingly, it is possible to study both single cells and entire populations simultaneously, allowing for very nuanced studies. Older, well known techniques often require some degree of cell disturbance such as the fluorescent antibody labeling required for fluorescense or confocal microscopy studies. In this paper we will present some of the studies made possible by DHM. We will compare DHM with previously used techniques and discuss the benefits and drawbacks of digital holography cell measurements

    HAMLET Binding to α-Actinin Facilitates Tumor Cell Detachment

    Get PDF
    Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed

    Bilateral Luxation of the Incudo-Stapedial Joint

    No full text

    Carcinoma of the Cervical Œsophagus Treated by End-To-End Anastomosis

    No full text

    Zur Frage der Herkunft der Peri- und Endolymphe

    No full text

    Actin redistribution underlies the sparing effect of mild hypothermia on dendritic spine morphology after in vitro ischemia.

    No full text
    Brain hypothermia is at present the most effective neuroprotective treatment against brain ischemia in man. Ischemia induces a redistribution of proteins involved in synaptic functions, which is markedly diminished by therapeutic hypothermia (33 degrees C). Dendritic spines at excitatory synapses are motile and show both shape changes and rearrangement of synaptic proteins as a consequence of neuronal activity. We investigated the effect of reduced temperature (33 degrees C and 27 degrees C compared with 37 degrees C), on spine motility, length and morphology by studying the distribution of GFP-actin before, during and after induction of in vitro ischemia. Because high-concentration actin filaments are located inside spines, dissociated hippocampal neurons (7-11 DIV) from transgenic mice expressing GFP-actin were used in this study. The movement of the spines and the distribution of GFP-actin were recorded using time-lapse fluorescence microscopy. Under normal conditions rapid rearrangement of GFP-actin was seen in dendritic spines, indicating highly motile spines at 37 degrees C. Decreasing the incubation temperature to 33 degrees C or 27 degrees C, dramatically reduces actin dynamics (spine motility) by approximately 50% and 70%, respectively. In addition, the length of the spine shaft was reduced by 20%. We propose that decreasing the temperature from 37 degrees C to 33 degrees C during ischemia decreases the neuronal actin polymerization rate, which reduces spine calcium kinetics, disrupts detrimental cell signaling and protects neurons against damage

    Rho kinase inhibition protects CA1 cells in organotypic hippocampal slices during in vitro ischemia.

    No full text
    The actin cytoskeleton is a dynamic superstructure that regulates multiple cellular functions and that has been implicated in cell death regulation. We investigated whether modulating the neuronal actin cytoskeleton polymerization by Rho GTPase kinase (ROCK) inhibition influences cell death in hippocampal neuronal cultures and in murine organotypic hippocampal slice cultures subjected to in vitro ischemia (IVI). During IVI, spines on vehicle treated hippocampal neurons collapsed and large dendritic actin aggregates were formed. Following ROCK inhibition by Y27632, the actin aggregates were markedly smaller while large filopodia extended from the dendritic trunk. Y27632 also provided strong neuroprotection of hippocampal pyramidal CA1 neurons, which was of similar magnitude as protection by NMDA receptor blockade. Likewise, treatment with the F-actin depolymerizing agent latrunculin during IVI diminished actin aggregation and mitigated cell death following IVI. We propose that ROCK inhibition protects neurons against ischemic damage by disrupting actin polymerization thereby mitigating NMDA receptor induced toxicity and releasing ATP bound to actin for cellular energy use. We conclude that ROCK inhibitors abrogate multiple detrimental processes and could therefore be useful in stroke therapy

    Digital holographic microscopy : innovative and non-destructive analysis of living cells

    No full text
    Digital holography is a novel technique that has been developed recently to study living cells. The technique is an innovative, non-destructive method with possibilities to study living cells over time. We are investigating cell number, growth, viability and death of adherent cells using digital holography, which is a novel, label-free, imaging technique for biological applications. We have recently demonstrated that digital holography is highly comparable to the conventional manual cell counting method using a hemocytometer (Mölder et al., 2008). Digital holography is a method that gives us information about the refractive index of cells, which can change under different circumstances. The technique is cheap, fast and simple to use. The unique measurable parameters are the cell number, cell area, thickness and volume, which can be transformed to proliferation, migration, viability and cell death. The digital holographic images produced can provide both quantitative and qualitative phase information from a single hologram. Future applications can include real-time cell monitoring of various parameters of cells of different diseases in response to clinically relevant compounds

    Non-invasive, label.free cell counting and quantitative analysis of adherent cells using digital holography

    No full text
    Manual cell counting is time consuming and requires a high degree of skill on behalf of the person performing the count. Here we use a technique that combines digital holography and phase contrast microscopy allowing label-free and completely non-invasive cell counting directly in cell culture vessels with adherent viable cells. Digital holography can provide both quantitative and qualitative phase information from a single hologram. The recently constructed microscope HolomonitorTM M2 combines digital holography with the benefits of the commonly used phase contrast microscope, allowing us to combine the advantages of light imaging with the possibility of achieving quantitative information on cellular shape, area, confluence and optical thickness. This project aimed at determining the accuracy and repeatability of cell counting measurements using digital holography compared to the conventional manual cell counting method using a haemocytometer. The collected data were also used to determine cell size and cellular optical thickness. The results show that digital holography can be used for non-invasive cell counting as precisely and much faster than conventional manual cell counting
    corecore