1,206 research outputs found

    Flight flutter testing using pulse techniques

    Get PDF
    A case of flutter developed at a speed lower than had been flown previously. This incident precipitated the routine procedure of pulsing control surfaces as well as the firing of explosive charges during speed build-ups. In the interest of rapid evaluation of results, simple methods of data reduction were used. A case history is presented where in the pulse technique predicted flutter by extrapolating decay rates obtained at subcritical speeds; in addition, a case is presented where no valid extrapolation could be made

    New experimental techniques for solar cells

    Get PDF
    Solar cell capacitance has special importance for an array controlled by shunting. Experimental measurements of solar cell capacitance in the past have shown disagreements of orders of magnitude. Correct measurement technique depends on maintaining the excitation voltage less than the thermal voltage. Two different experimental methods are shown to match theory well, and two effective capacitances are defined for quantifying the effect of the solar cell capacitance on the shunting system

    Analytical expression of the magneto-optical Kerr effect and Brillouin light scattering intensity arising from dynamic magnetization

    Full text link
    Time-resolved magneto-optical Kerr effect (MOKE) and Brillouin light scattering (BLS) spectroscopy are important techniques for the investigation of magnetization dynamics. Within this article, we calculate analytically the MOKE and BLS signals from prototypical spin-wave modes in the ferromagnetic layer. The reliability of the analytical expressions is confirmed by optically exact numerical calculations. Finally, we discuss the dependence of the MOKE and BLS signals on the ferromagnetic layer thickness

    Coping of cancer patients during and after radiotherapy - a follow-up of 2 years

    Get PDF
    Aim: We wanted to understand coping strategies specific to different phases up to two years after radiotherapy, to identify patients who are at higher risk of mood disturbances and to characterise the association between coping strategies and psychosocial adaptation. Patients and Methods: From 1997 to 2001, 2,169 patients with different diagnoses were screened (27.8% refused to participate). Data of 276 patients from the beginning of radiotherapy (ti1) and 5 follow-up investigations (ti6/2 years) could be analysed. With the FKV ( Freiburg Questionnaire Coping with Disease) cancer-specific coping aspects were assessed. The association between coping styles and psychosocial adaptation was evaluated using the Questionnaire on Stress in Cancer Patients (QSC) and the questionnaire on Functional Assessment of Cancer Treatment (FACT-G). Results: `Active problem-orientated' coping and `distractions' are the most important coping strategies. Only `active problem-orientated' and `depressive' coping showed a significant decrease. We observed higher means on the scales of the FKV in women. Marital status ( single, married, divorced/widowed) had a significant influence on active problem-orientated coping and spirituality. Age, children, education, T/M status and curative/ palliative intention of treatment had no influence on coping styles. Breast cancer patients and lymphoma patients demonstrated the highest use of coping strategies after radiotherapy with a significant decrease of `active problem-orientated coping'. Depressive coping and minimizing importance at ti1 were associated with high psychosocial distress and low quality of life (QoL) at ti6. Conclusion: The correlation of coping mechanisms at the beginning of radiotherapy with low QoL and high psychosocial stress at 2 years could help to identify patients at risk for low psychosocial adaptation. Psychooncologically trained teams of physicians would best correspond to this profile of needs and would contribute significantly to an ameliorated adaptation of patients to cancer which could lead to higher life satisfaction

    On the analysis of non-photochemical chlorophyll fluorescence quenching curves I. Theoretical considerations

    Get PDF
    AbstractNon-photochemical quenching (NPQ) protects photosynthetic organisms against photodamage by high light. One of the key measuring parameters for characterizing NPQ is the high-light induced decrease in chlorophyll fluorescence. The originally measured data are maximal fluorescence (Fm′) signals as a function of actinic illumination time (Fm′(t)). Usually these original data are converted into the so-called Stern–Volmer quenching function, NPQSV(t), which is then analyzed and interpreted in terms of various NPQ mechanisms and kinetics. However, the interpretation of this analysis essentially depends on the assumption that NPQ follows indeed a Stern–Volmer relationship. Here, we question this commonly assumed relationship, which surprisingly has never been proven. We demonstrate by simulation of quenching data that particularly the conversion of time-dependent quenching curves like Fm′(t) into NPQSV(t) is (mathematically) not “innocent” in terms of its effects. It distorts the kinetic quenching information contained in the originally measured function Fm′(t), leading to a severe (often sigmoidal) distortion of the time-dependence of quenching and has negative impact on the ability to uncover the underlying quenching mechanisms and their contribution to the quenching kinetics. We conclude that the commonly applied analysis of time-dependent NPQ in NPQSV(t) space should be reconsidered. First, there exists no sound theoretical basis for this common practice. Second, there occurs no loss of information whatsoever when analyzing and interpreting the originally measured Fm′(t) data directly. Consequently, the analysis of Fm′(t) data has a much higher potential to provide correct mechanistic answers when trying to correlate quenching data with other biochemical information related to quenching

    Experimental and theoretical analysis of the upper critical field in FSF trilayers

    Full text link
    The upper critical magnetic field H_{c2} in thin-film FSF trilayer spin-valve cores is studied experimentally and theoretically in geometries perpendicular and parallel to the heterostructure surface. The series of samples with variable thicknesses of the bottom and of the top Cu_{41}Ni_{59} F-layers are prepared in a single run, utilizing a wedge deposition technique. The critical field H_{c2} is measured in the temperature range 0.480.4-8 K and for magnetic fields up to 9 Tesla. A transition from oscillatory to reentrant behavior of the superconducting transition temperature versus F-layers thickness, induced by an external magnetic field, has been observed for the first time. In order to properly interpret the experimental data, we develop a quasiclassical theory, enabling one to evaluate the temperature dependence of the critical field and the superconducting transition temperature for an arbitrary set of the system parameters. A fairly good agreement between our experimental data and theoretical predictions is demonstrated for all samples, using a single set of fit parameters. This confirms adequacy of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) physics in determining the unusual superconducting properties of the studied Cu_{41}Ni_{59}/Nb/Cu_{41}Ni_{59} spin-valve core trilayers.Comment: 16 pages, 7 figures; published versio

    Memory Effect and Triplet Pairing Generation in the Superconducting Exchange Biased Co/CoOx/Cu41Ni59/Nb/Cu41Ni59 Layered Heterostructure

    Full text link
    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, the resistive state of which depends on the preceding magnetic field polarity. The effect is based on a strong exchange bias (about -2 kOe) on a diluted ferromagnetic copper-nickel alloy and generation of a long range odd in frequency triplet pairing component. The difference of high and low resistance states at zero magnetic field is 90% of the normal state resistance for a transport current of 250 {\mu}A and still around 42% for 10 {\mu}A. Both logic states of the structure do not require biasing fields or currents in the idle mode.Comment: 9 pages, 4 figures, Accepted to Applied Physics Letter

    Langzeitergebnisse nach Ohranlegeplastik

    Get PDF

    Reentrant Superconductivity and Superconducting Critical Temperature Oscillations in F/S/F trilayers of Cu41Ni59/Nb/Cu41Ni59 Grown on Cobalt Oxide

    Full text link
    Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers constitute the core of a superconducting spin valve. The switching effect of the spin valve is based on interference phenomena occurring due to the proximity effect at the S/F interfaces. A remarkable effect is only expected if the core structure exhibits strong critical temperature oscillations, or most favorable, reentrant superconductivity, when the thickness of the ferromagnetic layer is increased. The core structure has to be grown on an antiferromagnetic oxide layer (or such layer to be placed on top) to pin by exchange bias the magnetization-orientation of one of the ferromagnetic layers. In the present paper we demonstrate that this is possible, keeping the superconducting behavior of the core structure undisturbed.Comment: 22 pages, 12 figures, 1 tabl

    Temperature determination from the lattice gas model

    Get PDF
    Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: nch/Zn_{ch}/Z where nchn_{ch} is the charge multiplicity and ZZ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.Comment: 11 pages, 2 ps file
    corecore