3 research outputs found

    The Polymorphic Nuclear Factor NFIB Regulates Hepatic CYP2D6 Expression and Influences Risperidone Metabolism in Psychiatric Patients

    Get PDF
    The genetic background for interindividual variability of the polymorphic CYP2D6 enzyme activity remains incompletely understood and the role of NFIB genetic polymorphism for this variability was evaluated in this translational study. We investigated the effect of NFIB expression in vitro using 3D liver spheroids, Huh7 cells, and the influence of the NFIB polymorphism on metabolism of risperidone in patients in vivo. We found that NFIB regulates several important pharmacogenes, including CYP2D6. NFIB inhibited CYP2D6 gene expression in Huh7 cells and NFIB expression in livers was predominantly nuclear and reduced at the mRNA and protein level in carriers of the NFIB rs28379954 T>C allele. Based on 604 risperidone treated patients genotyped for CYP2D6 and NFIB, we found that the rate of risperidone hydroxylation was elevated in NFIB rs28379954 T>C carriers among CYP2D6 normal metabolizers, resulting in a similar rate of drug metabolism to what is observed in CYP2D6 ultrarapid metabolizers, with no such effect observed in CYP2D6 poor metabolizers lacking functional enzyme. The results indicate that NFIB constitutes a novel nuclear factor in the regulation of cytochrome P450 genes, and that its polymorphism is a predictor for the rate of CYP2D6 dependent drug metabolism in vivo

    Impact of NFIB and CYP1A variants on clozapine serum concentration—A retrospective naturalistic cohort study on 526 patients with known smoking habits

    Get PDF
    Clinical response of clozapine is closely associated with serum concentration. Although tobacco smoking is the key environmental factor underlying interindividual variability in clozapine metabolism, recent genome-wide studies suggest that CYP1A and NFIB genetic variants may also be of significant importance, but their quantitative impact is unclear. We investigated the effects of the rs2472297 C>T (CYP1A) and rs28379954 T>C (NFIB) polymorphisms on serum concentrations in smokers and nonsmokers. The study retrospectively included 526 patients with known smoking habits (63.7% smokers) from a therapeutic drug monitoring service in Norway. Clozapine dose-adjusted concentrations (C/D) and patient proportions with subtherapeutic levels (<1070 nmol/L) were compared between CYP1A/NFIB variant allele carriers and homozygous wild-type carriers (noncarriers), in both smokers and nonsmokers. Clozapine C/D was reduced in patients carrying CYP1A-T and NFIB-C variants versus noncarriers, both among smokers (−48%; p < 0.0001) and nonsmokers (−35%; p = 0.028). Patients who smoke carrying CYP1A-T and NFIB-C variants had a 66% reduction in clozapine C/D versus nonsmoking noncarriers (p < 0.0001). The patient proportion with subtherapeutic levels was 2.9-fold higher in patients who smoke carrying NFIB-C and CYP1A-T variants versus nonsmoking noncarriers (p < 0.0001). In conclusion, CYP1A and NFIB variants have significant and additive impact on clozapine dose requirements for reaching target serum concentrations. Patients who smoke carrying the studied CYP1A and NFIB variants, comprising 2.5% of the study population, may need threefold higher doses to prevent risk of clozapine undertreatment. The results suggest that pre-emptive genotyping of NFIB and CYP1A may be utilized to guide clozapine dosing and improve clinical outcomes in patients with treatment-resistant schizophrenia. © 2022 The Authors. Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics

    Effect of the NFIB rs28379954 T>C polymorphism on CYP2D6‐catalyzed metabolism of solanidine

    No full text
    Abstract Cytochrome P450 2D6 (CYP2D6) is important for metabolism of 20%–25% of all clinically used drugs. Many known genetic variants contribute to the large interindividual variability in CYP2D6 metabolism, but much is still unexplained. We recently described that nuclear factor 1B (NFIB) regulates hepatic CYP2D6 expression with the minor allele of NFIB rs28379954 T>C significantly increasing CYP2D6‐mediated risperidone metabolism. In this study, we investigated the effect of NFIB T>C on metabolism of solanidine, a dietary CYP2D6 substrate. Analyses of solanidine and metabolites (M414, M416, and M444) were performed by ultra‐high performance liquid chromatography‐high‐resolution mass spectrometry in a cohort of 463 CYP2D6‐genotyped patients of which with 58 (12.5%) carried NFIB TC (n = 56) or CC (n = 2). Increased metabolism of solanidine was found in CYP2D6 normal metabolizers (NMs; n = 258, 55.7%) carrying the NFIB C variant (n = 27, 5.8%) with 2.83‐ and 3.38‐fold higher M416‐to‐solanidine (p = 0.039) and M444‐to‐solanidine (p = 0.046) ratios, respectively, whereas this effect was not significant among intermediate metabolizers (n = 166, 35.9%) (p ≥ 0.09). Importantly, no effect of the NFIB polymorphism on solanidine metabolism was seen in TC or CC carriers lacking CYP2D6 activity (poor metabolizers, n = 30, 6.5%, p ≥ 0.74). Furthermore, the NFIB polymorphism significantly explained variability in solanidine metabolism (M414 p = 0.013, M416 p = 0.020, and M416 and M444 p = 0.009) in multiple linear regression models for each metabolic ratio in the entire population, correcting for covariates (including CYP2D6 genotypes). Thus, the study confirms the effect of NFIB in regulating CYP2D6 activity, suggesting an about 200% increase in CYP2D6‐mediated clearance in NMs being NFIB CT or CC carriers, comprising around 6% of Europeans
    corecore