1,754 research outputs found

    Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    Get PDF
    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators

    Turing Instability in a Boundary-fed System

    Get PDF
    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry-breaking perturbations (Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experiments.Comment: 41 pages, 18 figures, to be published in Physical Review

    Effect of Co doping and hydrostatic pressure on SrFe2As2

    Full text link
    We report a pressure study on electron doped SrFe2x_{2-x}Cox_xAs2_2 by electrical-resistivity (ρ\rho) and magnetic-susceptibility (χ\chi) experiments. Application of either external pressure or Co substitution rapidly suppresses the spin-density wave ordering of the Fe moments and induces superconductivity in SrFe2_2As2_2. At x=0.2x=0.2 the broad superconducting (SC) dome in the TpT-p phase diagram exhibits its maximum Tc,max=20T_{c,{\rm max}}=20 K at a pressure of only pmax0.75p_{\rm max}\approx 0.75 GPa. In SrFe1.5_{1.5}Co0.5_{0.5}As2_2 no superconductivity is observed anymore up to 2.8 GPa. Upon increasing the Co concentration the maximum of the SC dome shifts toward lower pressure accompanied by a decrease in the value of Tc,maxT_{c,{\rm max}}. Even though, superconductivity is induced by both tuning methods, Co substitution leads to a much more robust SC state. Our study evidences that in SrFe2x_{2-x}Cox_xAs2_2 both, the effect of pressure and Co-substitution, have to be considered in order to understand the SC phase-diagram and further attests the close relationship of SrFe2_2As2_2 and its sister compound BaFe2_2As2_2.Comment: 6 pages, 6 figure

    Temperature - pressure phase diagram of CeCoSi: Pressure induced high-temperature phase

    Full text link
    We have studied the temperature-pressure phase diagram of CeCoSi by electrical-resistivity experiments under pressure. Our measurements revealed a very unusual phase diagram. While at low pressures no dramatic changes and only a slight shift of the Ne\'{e}l temperature TNT_N (10\approx 10 K) are observed, at about 1.45 GPa a sharp and large anomaly, indicative of the opening of a spin-density-wave (SDW) gap, appears at a comparatively high temperature TS38T_S \approx 38 K. With further increasing pressure TST_S shifts rapidly to low temperatures and disappears at about 2.15 GPa, likely continuously in a quantum critical point, but without evidence for superconductivity. Even more surprisingly, we observed a clear shift of TST_S to higher temperatures upon applying a magnetic field. We discuss two possible origins for TST_S, either magnetic ordering of Co or a meta-orbital type of transition of Ce.Comment: 6 pages, 5 figure

    Nonlinearity arising from noncooperative transcription factor binding enhances negative feedback and promotes genetic oscillations

    Get PDF
    We study the effects of multiple binding sites in the promoter of a genetic oscillator. We evaluate the regulatory function of a promoter with multiple binding sites in the absence of cooperative binding, and consider different hypotheses for how the number of bound repressors affects transcription rate. Effective Hill exponents of the resulting regulatory functions reveal an increase in the nonlinearity of the feedback with the number of binding sites. We identify optimal configurations that maximize the nonlinearity of the feedback. We use a generic model of a biochemical oscillator to show that this increased nonlinearity is reflected in enhanced oscillations, with larger amplitudes over wider oscillatory ranges. Although the study is motivated by genetic oscillations in the zebrafish segmentation clock, our findings may reveal a general principle for gene regulation.Comment: 11 pages, 8 figure

    Avoided ferromagnetic quantum critical point in CeRuPO

    Get PDF
    CeRuPO is a rare example of a ferromagnetic (FM) Kondo-lattice system. External pressure suppresses the ordering temperature to zero at about pc3p_c\approx3 GPa. Our ac-susceptibility and electrical-resistivity investigations evidence that the type of magnetic ordering changes from FM to antiferromagnetic (AFM) at about p0.87p^*\approx0.87 GPa. Studies in applied magnetic fields suggest that ferromagnetic and antiferromagnetic correlations compete for the ground state at p>pp>p^*, but finally the AFM correlations win. The change in the magnetic ground-state properties is closely related to the pressure evolution of the crystalline-electric-field level (CEF) scheme and the magnetic Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. The N\'{e}el temperature disappears abruptly in a first-order-like fashion at pcp_c, hinting at the absence of a quantum critical point. This is consistent with the low-temperature transport properties exhibiting Landau-Fermi-liquid (LFL) behavior in the whole investigated pressure range up to 7.5 GPa.Comment: 12 figure

    Competition of local-moment ferromagnetism and superconductivity in Co-substituted EuFe2As2

    Full text link
    In contrast to SrFe2As2, where only the iron possesses a magnetic moment, in EuFe2As2 an additional large, local magnetic moment is carried by Eu2+. Like SrFe2As2, EuFe2As2 exhibits a spin-density wave transition at high temperatures, but in addition the magnetic moments of the Eu2+ order at around 20 K. The interplay of pressure-induced superconductivity and the Eu2+ order leads to a behavior which is reminiscent of re-entrant superconductivity as it was observed, for example, in the ternary Chevrel phases or in the rare-earth nickel borocarbides. Here, we study the delicate interplay of the ordering of the Eu2+ moments and superconductivity in EuFe1.9Co0.1As2, where application of external pressure makes it possible to sensitively tune the ratio of the magnetic (T_C) and the superconducting (T_{c,onset}) critical temperatures. We find that superconductivity disappears once T_C > T_{c,onset}.Comment: 4 pages, 4 figures, submitted to the proceedings of SCES201
    corecore