155 research outputs found

    Lactic acid production a bibliometric study

    Get PDF
    Bibliometrics is a documentary analysis tool that is positioning itself as a support to know and understand the study status of a specific topic. In this case, the VOSviewer software was used to determine the evolution of lactic acid production, carried out through a programmed search with the VOSviewer application, which allowed a clear and reliable bibliographic review for the topic development under study, which made possible to obtain enough material to know who, where and in what year have published about the latest advances in the production of lactic acid. The database used was Scopus, with the search equation “lactic acid” and production and “natural sources”

    PD-1 checkpoint inhibition enhances the antilymphoma activity of CD19-CAR-iNKT cells that retain their ability to prevent alloreactivity.

    Get PDF
    Relapse and graft-versus-host disease (GVHD) are the main causes of death after allogeneic hematopoietic cell transplantation (HCT). Preclinical murine models and clinical data suggest that invariant natural killer T (iNKT) cells prevent acute and chronic GVHD. In addition, iNKT cells are crucial for efficient immune responses against malignancies and contribute to reduced relapse rates after transplantation. Chimeric antigen receptors (CAR) redirect effector cells to cell surface antigens and enhance killing of target cells. With this study, we aimed to combine enhanced cytotoxicity of CD19-CAR-iNKT cells against lymphoma cells with their tolerogenic properties. iNKT cells were isolated from peripheral blood mononuclear cells and transduced with an anti-CD19-CAR retrovirus. After in vitro expansion, the functionality of CD19-CAR-iNKT cells was assessed by flow cytometry, image stream analysis and multiplex analysis in single-stimulation or repeated-stimulation assays. Moreover, the immunoregulatory properties of CD19-CAR-iNKT cells were analyzed in apoptosis assays and in mixed lymphocyte reactions. The effect of checkpoint inhibition through nivolumab was analyzed in these settings. In this study, we could show that the cytotoxicity of CD19-CAR-iNKT cells was mediated either through engagement of their CAR or their invariant T-cell receptor, which may circumvent loss of response through antigen escape. However, encounter of CD19-CAR-iNKT cells with their target induced a phenotype of exhaustion. Consequently, checkpoint inhibition increased cytokine release, cytotoxicity and survival of CD19-CAR-iNKT cells. Additionally, they showed robust suppression of alloreactive immune responses. In this work, we demonstrate that CAR-iNKT cells are a powerful cytotherapeutic option to prevent or treat relapse while potentially reducing the risk of GVHD after allogeneic HCT

    A parabolic solar collector for harnessing solar energy in Bucaramanga, Colombia

    Get PDF
    In this work, a solar energy collection system based on a parabolic solar collector adjusted to the conditions and availability of energy was designed to examine this type of collection device and evaluate the energy potential when installed in an educational institution. To do this, data from the historical series of solar radiation compiled by the POWER project (Prediction of Worldwide Energy Resources) were analyzed and compared with data from the Institute of Hydrology, Meteorology and Environmental Studies in Colombia (IDEAM)

    Juvenile obesity and its association with utilisation and costs of pharmaceuticals - results from the KiGGS study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>According to a national reference, 15% of German children and adolescents are overweight (including obese) and 6.3% are obese. An earlier study analysed the impact of childhood overweight and obesity on different components of direct medical costs (physician, hospital and therapists). To complement the existing literature for Germany, this study aims to explore the association of body mass index (BMI) with utilisation of pharmaceuticals and related costs in German children and adolescents.</p> <p>Methods</p> <p>Based on data from 14, 836 respondents aged 3-17 years in the German Interview and Examination Survey for Children and Adolescents (KiGGS), drug intake and associated costs were estimated using a bottom-up approach. To investigate the association of BMI with utilisation and costs, univariate analyses and multivariate generalised mixed models were conducted.</p> <p>Results</p> <p>There was no significant difference between BMI groups regarding the probability of drug utilisation. However, the number of pharmaceuticals used was significantly higher (14%) for obese children than for normal weight children. Furthermore, there was a trend for more physician-prescribed medication in obese children and adolescents. Among children with pharmaceutical intake, estimated costs were 24% higher for obese children compared with the normal weight group.</p> <p>Conclusions</p> <p>This is the first study to estimate excess drug costs for obesity based on a representative cross-sectional sample of the child and adolescent population in Germany. The results suggest that obese children should be classified as a priority group for prevention. This study complements the existing literature and provides important information concerning the relevance of childhood obesity as a health problem.</p

    Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The SRY-related HMG-box family of transcription factors member <it>SOX2 </it>has been mainly studied in embryonic stem cells as well as early foregut and neural development. More recently, SOX2 was shown to participate in reprogramming of adult somatic cells to a pluripotent stem cell state and implicated in tumorigenesis in various organs. In breast cancer, SOX2 expression was reported as a feature of basal-like tumors. In this study, we assessed SOX2 expression in 95 primary tumors of postmenopausal breast cancer patients.</p> <p>Methods</p> <p>Samples from 95 patients diagnosed and treated at the University of Tuebingen Institute of Pathology and Women's Hospital were analyzed by immunohistochemistry for SOX2 expression in the primary tumor samples and in corresponding lymph node metastasis, where present. Furthermore, SOX2 amplification status was assessed by FISH in representative samples. In addition, eighteen fresh frozen samples were analyzed for <it>SOX2</it>, <it>NANOG </it>and <it>OCT4 </it>gene expression by real-time PCR.</p> <p>Results</p> <p>SOX2 expression was detected in 28% of invasive breast carcinoma as well as in 44% of ductal carcinoma in situ (DCIS) lesions. A score of SOX2 expression (score 0 to 3) was defined in order to distinguish SOX2 negative (score 0) from SOX2 positive samples (score 1-3) and among latter the subgroup of SOX2 high expressors (score 3 > 50% positive cells). Overall, the incidence of SOX2 expression (score 1-3) was higher than previously reported in a cohort of lymph node negative patients (28% versus 16.7%). SOX2 expression was detected across different breast cancer subtypes and did not correlate with tumor grading. However, high SOX2 expression (score 3) was associated with larger tumor size (p = 0.047) and positive lymph node status (0.018). Corresponding metastatic lymph nodes showed higher SOX2 expression and were significantly more often SOX2 positive than primary tumors (p = 0.0432).</p> <p>Conclusions</p> <p>In this report, we show that the embryonic stem cell factor SOX2 is expressed in a variety of early stage postmenopausal breast carcinomas and metastatic lymph nodes. Our data suggest that SOX2 plays an early role in breast carcinogenesis and high expression may promote metastatic potential. Further studies are needed to explore whether SOX2 can predict metastatic potential at an early tumor stage.</p

    A Defined, Feeder-Free, Serum-Free System to Generate In Vitro Hematopoietic Progenitors and Differentiated Blood Cells from hESCs and hiPSCs

    Get PDF
    Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human development processes, for drug discovery, and in clinical cell therapy applications. To efficiently differentiate pluripotent cells into a pure population of hematopoietic progenitors we have developed a new 2-dimentional, defined and highly efficient protocol that avoids the use of feeder cells, serum or embryoid body formation. Here we showed that a single matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells from pluripotent cells

    GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers.

    Get PDF
    Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy

    Production of Embryonic and Fetal-Like Red Blood Cells from Human Induced Pluripotent Stem Cells

    Get PDF
    We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications
    corecore