48 research outputs found

    Lokális tulajdonságok kvantumkémiai analízise és számítása = Quantum chemical analysis and computation of local properties

    Get PDF
    - Általánosítottuk az effektív atompályák fogalmát az ún. 3-dimenziós (fuzzy atom, Bader atom) analízis esetére. A hagyományos atompálya-képet alá lehet támasztani akár síkhullám-számítások eredményei alapján is. - Kötésrend-számítások síkhullám-szá | - The concept of effective atomic orbitals has been generalized for the case of the 3-dimensional analysis (fuzzy atoms, Bader's atoms). The classical picture of atomic orbitals can be corroborated even based on the results of plane-wave calculations

    Reduced-dimensionality study of the reaction of methane with H atom

    Get PDF

    Dynamics of Complex-Forming Bimolecular Reactions: A Comparative Theoretical Study of the Reactions of H Atoms with O2(3Σg–) and O2(1Δg)

    Get PDF
    The atomic-level mechanism of the reaction of H atoms with triplet and singlet molecular oxygen, H((2)S) + O2((3)Σg(-)) → O((3)P) + OH((2)Πg) ( R1 ) and H((2)S) + O2((1)Δg) → O((3)P) + OH((2)Πg) ( R2 ) is analyzed in terms of the topology of the potential energy surfaces (PES) of the two reactions. Both PES exhibit a deep potential well corresponding to the ground and first excited electronic state of HO2. The ground-state reaction is endothermic with no barrier on either side of the well; the excited-state reaction is exothermic with a barrier in the entrance valley of the PES. The differences of the PES are manifested in properties such as the excitation functions, which show reaction R1 to be much slower and the effect of rotational excitation on reactivity, which speeds up reaction R1 and has little effect on R2 . Numerous common dynamics features arise from the presence of the deep potential well on the PES. Such are the significant role of isomerization (for example, 90% of reactive collisions in R2 involve at least one H atom transfer from one of the O atoms to the other in reaction R2 ), which is shown to give rise to a significant rotational excitation of the product OH radicals. Common is the significant sideways scattering of the products that originates from collisions in propeller-type arrangements induced by the presence of two bands of acceptance around the O2 molecule. The HO2 complex in both reactions proves to behave nonstatistically, with signatures of the dynamics in lifetime distributions, angular distributions, opacity functions, and product quantum-state distributions.status: publishe

    A general formulation of the quasiclassical trajectory method for reduced-dimensionality reaction dynamics calculations

    Get PDF
    Dimension reduction by freezing the unimportant coordinates is widely used in intramolecular and reaction dynamics calculations when the solution of the accurate full-dimensional nuclear Schrödinger equation is not feasible. In this paper we report on a novel form of the exact classical internal-coordinate Hamiltonian for full and reduced-dimensional vibrational motion of polyatomic molecules with the purpose of using it in quasiclassical trajectory (QCT) calculations. The derivation is based on the internal to body-fixed frame transformation, as in the t-vector formalism, however it does not require the introduction of rotational variables to allow cancellation of non-physical rotations within the body-fixed frame. The formulas needed for QCT calculations: normal mode analysis and state sampling as well as for following the dynamics and normal-mode quantum number assignment at instantaneous states are presented. The procedure is demonstrated on the CH4, CD4, CH3D and CHD3 isotopologs of methane using three reduced-dimensional models, which were previously used in quantum reactive scattering studies of the CH4+XCH3+HX type reactions. The reduced-dimensional QCT methodology formulated this way combined with full-dimensional QCT calculations makes possible the classical validation of reduced-dimensional models that are used in the quantum mechanical description of the nuclear dynamics in reactive systems [Vikár et al., J. Phys. Chem. A 120 (2016) 5083–5093.

    Substituent Effect on the Photoreduction Kinetics of Benzophenone

    Get PDF
    The kinetics of the photoreduction of four benzophenone derivatives by isopropyl alcohol was examined in acetonitrile, namely tetra-meta-trifluoromethyl-, di-para-trifluoromethyl-, di-para-methoxy benzophenone and for comparison the unsubstituted molecule itself. The basic spectroscopic (absorption and phosphorescence spectra) and photophysical (quantum yields, excited state energies) properties were established, and the key kinetic parameters were determined by the laser flash photolysis transient absorption technique. The rate coefficients of both the primary and secondary photoreduction reaction show remarkable dependence on ring substitution. This substantial effect is caused by the considerable change in the activation energy of the corresponding process. The experimental results as well as DFT quantum chemical calculations clearly indicate that these benzophenone derivatives all react as n-p* excited ketones, and the rate as well as the activation energy of the reduction steps change parallel with the reaction enthalpies, the determining factor being the stability of the forming aromatic ketyl radicals. The secondary photoreduction of benzophenones by the aliphatic ketyl radical formed in the primary step occurs via a hydrogen bonded complex. The binding energy of the hydrogen bonded complex between the aliphatic ketyl radical reactant and a solvent molecule is a critical parameter influencing the observable rate of the secondary photoreduction

    Glutathione as a Prebiotic Answer to alpha-Peptide Based Life.

    Get PDF
    The energetics of peptide bond formation is an important factor not only in the design of chemical peptide synthesis, but it also has a role in protein biosynthesis. In this work, quantum chemical calculations at 10 different levels of theory including G3MP2B3 were performed on the energetics of glutathione formation. The strength of the peptide bond is found to be closely related to the acid strength of the to-be N-terminal and the basicity of the to-be C-terminal amino acid. It is shown that the formation of the first peptide activates the amino acid for the next condensation step, manifested in bacterial protein synthesis where the first step is the formation of an N-formylmethionine dipeptide. The possible role of glutathione in prebiotic molecular evolution is also analyzed. The implications of the thermodynamics of peptide bond formation in prebiotic peptide formation as well as in the preference of alpha- instead of beta- or gamma-amino acids are discussed. An empirical correction is proposed for the compensation of the error due to the incapability of continuum solvation models in describing the change of the first solvation shell when a peptide bond is formed from two zwitterions accompanied by the disappearance of one ion pair
    corecore