712 research outputs found

    Modern lineages of Mycobacterium tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages

    Get PDF
    BACKGROUND: Strains of Mycobacterium tuberculosis vary in virulence. Strains that have caused outbreaks in the United States and United Kingdom have been shown to subvert the innate immune response as a potential immune evasion mechanism. There is, however, little information available as to whether these patterns of immune subversion are features of individual strains or characteristic of broad clonal lineages of M. tuberculosis . METHODS: Strains from two major modern lineages (lineage 2 [East-Asian] and lineage 4 [Euro-American]) circulating in the Western Cape in South Africa as well as a comparator modern lineage (lineage 3 [CAS/Delhi]) were identified. We assessed two virulence associated characteristics: mycobacterial growth (in liquid broth and monocyte derived macrophages) and early pro-inflammatory cytokine induction. RESULTS: In liquid culture, Lineage 4 strains grew more rapidly and reached higher plateau levels than other strains (lineage 4 vs. lineage 2 p = 0.0024; lineage 4 vs. lineage 3 p = 0.0005). Lineage 3 strains were characterized by low and early plateau levels, while lineage 2 strains showed an intermediate growth phenotype. In monocyte-derived macrophages, lineage 2 strains grew faster than lineage 3 strains (p<0.01) with lineage 4 strains having an intermediate phenotype. Lineage 2 strains induced the lowest levels of pro-inflammatory TNF and IL-12p40 as compared to other lineages (lineage 2: median TNF 362 pg/ml, IL-12p40 91 pg/ml; lineage 3: median TNF 1818 pg/ml, IL-12p40 123 pg/ml; lineage 4: median TNF 1207 pg/ml, IL-12p40 205 pg/ml;). In contrast, lineage 4 strains induced high levels of IL-12p40 and intermediate level of TNF. Lineage 3 strains induced high levels of TNF and intermediate levels of IL-12p40. CONCLUSIONS: Strains of M. tuberculosis from the three major modern strain lineages possess distinct patterns of growth and cytokine induction. Rapid growth and immune subversion may be key characteristics to the success of these strains in different human populations

    Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport

    Get PDF
    The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.</p

    Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport

    Get PDF
    The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.</p

    The social value of housing in straitened times: The view from England

    Get PDF
    This paper provides a commentary on the contemporary housing crisis in England and links it to broader questions of role of housing in capitalist economies and societies. It starts with the assumptions that housing and community development issues are linked to the wider housing market and that the housing crisis is not new but has long-run antecedents. The paper begins by reviewing the contemporary terrain of housing markets and policies in the UK. It then discusses several aspects of ‘crisis’: market volatility, rates of new supply, affordability, state welfare subsidies and socio-spatial inequalities. Policy responses to these are examined through a discussion of efforts to expand the role of the private rented sector, sell-off ‘expensive’ public housing and curtail market renewal investments. The paper concludes that current conceptualisations of the value of housing are often partial and insufficiently integrative and that policies must explicitly recognise housing as a social and economic asset

    Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    Get PDF
    General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. A B S T R A C T Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between MCA V mean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O 2 Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age-and gender-matched controls during leg crossing. In the patients, leg crossing increased MAP from 58 (42-79) In the control subjects, CO increased 11 % (P &lt; 0.05) with no change in TPR. By contrast, in the patients, CO increased 9 % (P &lt; 0.05), but also TPR increased by 13 % (P &lt; 0.05). In conclusion, leg crossing improves cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion and oxygenation were improved through a rise in MAP due to increments in both CO and TPR
    • …
    corecore