11 research outputs found

    Potential use of offshore marine structures in rebuilding an overfished rockfish species, bocaccio (Sebastes paucispinis)

    Get PDF
    Although bocaccio (Sebastes paucispinis) was an economically important rockfish species along the west coast of North America, overfishing has reduced the stock to about 7.4% of its former unfished population. In 2003, using a manned research submersible, we conducted fish surveys around eight oil and gas platforms off southern California as part of an assessment of the potential value of these structures as fish habitat. From these surveys, we estimated that there was a minimum of 430,000 juvenile bocaccio at these eight structures. We determined this number to be about 20% of the average number of juvenile bocaccio that survive annually for the geographic range of the species. When these juveniles become adults, they will contribute about one percent (0.8%) of the additional amount of fish needed to rebuild the Pacific Coast population. By comparison, juvenile bocaccio recruitment to nearshore natural nursery grounds, as determined through regional scuba surveys, was low in the same year. This research demonstrates that a relatively small amount of artificial nursery habitat may be quite valuable in rebuilding an overfished species

    An approach to estimating rockfish biomass based on larval production, with application to Sebastes jordani

    Get PDF
    An assessment of the total biomass of shortbelly rockfish (Sebastes jordani) off the central California coast is presented that is based on a spatially extensive but temporally restricted ichthyoplankton survey conducted during the 1991 spawning season. Contemporaneous samples of adults were obtained by trawl sampling in the study region. Daily larval production (7.56 × 1010 larvae/d) and the larval mortality rate (Z=0.11/d) during the cruise were estimated from a larval “catch curve,” wherein the logarithm of total age-specific larval abundance was regressed against larval age. For this analysis, larval age compositions at each of the 150 sample sites were determined by examination of otolith microstructure from subsampled larvae (n=2203), which were weighted by the polygonal Sette-Ahlstrom area surrounding each station. Female population weight-specific fecundity was estimated through a life table analysis that incorporated sex-specific differences in adult growth rate, female maturity, fecundity, and natural mortality (M). The resulting statistic (102.17 larvae/g) was insensitive to errors in estimating M and to the pattern of recruitment. Together, the two analyses indicated that a total biomass equal to 1366 metric tons (t)/d of age-1+ shortbelly rockfish (sexes combined) was needed to account for the observed level of spawning output during the cruise. Given the long-term seasonal distribution of spawning activity in the study area, as elucidated from a retrospective examination of California Cooperative Oceanic Fisheries Investigation (CalCOFI) ichthyoplankton samples from 1952 to 1984, the “daily” total biomass was expanded to an annual total of 67,392 t. An attempt to account for all sources of error in the derivation of this estimate was made by application of the delta-method, which yielded a coefficient of variation of 19%. The relatively high precision of this larval production method, and the rapidity with which an absolute biomass estimate can be obtained, establishes that, for some species of rockfish (Sebastes spp.), it is an attractive alternative to traditional age-structured stock assessments

    Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss

    Get PDF
    Nowadays, several options are available to treat patients with conductive or mixed hearing loss. Whenever surgical intervention is not possible or contra-indicated, and amplification by a conventional hearing device (e.g., behind-the-ear device) is not feasible, then implantable hearing devices are an indispensable next option. Implantable bone-conduction devices and middle-ear implants have advantages but also limitations concerning complexity/invasiveness of the surgery, medical complications, and effectiveness. To counsel the patient, the clinician should have a good overview of the options with regard to safety and reliability as well as unequivocal technical performance data. The present consensus document is the outcome of an extensive iterative process including ENT specialists, audiologists, health-policy scientists, and representatives/technicians of the main companies in this field. This document should provide a first framework for procedures and technical characterization to enhance effective communication between these stakeholders, improving health care

    Consensus statement on bone conduction devices and active middle ear implants in conductive and mixed hearing loss

    No full text
    corecore