79 research outputs found

    Sperm migration and selection in the reproductive tract of female mice is mostly affected by male genotype

    Get PDF

    Correlation of centromeric heterochromatin C-band polymorphism with breeding failure in mice

    Get PDF
    The aim of the present study was to test the hypothesis about the relation between segregation of chromosomes 14 and 18 and the deterioration of mouse fertility and vitality. The analysis was possible because C-banding on chromosome 14 and chromosome 18 of the CBA/Kw and KE strains show size polymorphism. A small sized C-band on chromosome 14 is characteristic for the CBA/Kw mice, while the KE mice show small C-bands on chromosomes 18. Thus, if fertility parameters are affected in a centromere-dependent manner, we should observe non-random inheritance of both chromosome pairs in recombinant inbred (RI) strains. The results showed statistically significant preferential segregation of chromosomes 14 and 18 with small C-bands. Most of the RI strains inherited chromosome 14 from the CBA/Kw strain and chromosome 18 from the KE strain, and did not manifest a deterioration of fertility and vitality. On the contrary, RI strains that inherited chromosomes 14 and 18 from one of the parental strains, particularly the KE strain, stopped breeding or had difficulties in producing the next generation

    Mice Overexpressing Both Non-Mutated Human SOD1 and Mutated SOD1G93A Genes: A Competent Experimental Model for Studying Iron Metabolism in Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS) and associated with mutations, frequently in the superoxide dismutase 1 (SOD1) gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month old and symptomatic, 4-month old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1

    Mottled mice and non-mammalian models of Menkes disease

    Get PDF
    Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterised by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a Copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the CNS across the blood-brain-barrier and blood–cerebrospinal fluid- barrier. Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80% ) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals

    Urinary hepcidin levels in iron-deficient and iron-supplemented piglets correlate with hepcidin hepatic mRNA and serum levels and with body iron status

    Get PDF
    Among livestock, domestic pig (Sus scrofa) is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS) are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status
    corecore