20 research outputs found

    Burden of disease in adults admitted to hospital in a rural region of coastal Kenya: an analysis of data from linked clinical and demographic surveillance systems

    Get PDF
    Background Estimates of the burden of disease in adults in sub-Saharan Africa largely rely on models of sparse data. We aimed to measure the burden of disease in adults living in a rural area of coastal Kenya with use of linked clinical and demographic surveillance data. Methods We used data from 18 712 adults admitted to Kilifi District Hospital (Kilifi , Kenya) between Jan 1, 2007, and Dec 31, 2012, linked to 790 635 person-years of observation within the Kilifi Health and Demographic Surveillance System, to establish the rates and major causes of admission to hospital. These data were also used to model diseasespecifi c disability-adjusted life-years lost in the population. We used geographical mapping software to calculate admission rates stratifi ed by distance from the hospital. Findings The main causes of admission to hospital in women living within 5 km of the hospital were infectious and parasitic diseases (303 per 100 000 person-years of observation), pregnancy-related disorders (239 per 100 000 personyears of observation), and circulatory illnesses (105 per 100 000 person-years of observation). Leading causes of hospital admission in men living within 5 km of the hospital were infectious and parasitic diseases (169 per 100 000 personyears of observation), injuries (135 per 100 000 person-years of observation), and digestive system disorders (112 per 100 000 person-years of observation). HIV-related diseases were the leading cause of disability-adjusted lifeyears lost (2050 per 100 000 person-years of observation), followed by non-communicable diseases (741 per 100 000 personyears of observation). For every 5 km increase in distance from the hospital, all-cause admission rates decreased by 11% (95% CI 7–14) in men and 20% (17–23) in women. The magnitude of this decline was highest for endocrine disorders in women (35%; 95% CI 22–46) and neoplasms in men (30%; 9–45). Interpretation Adults in rural Kenya face a combined burden of infectious diseases, pregnancy-related disorders, cardiovascular illnesses, and injuries. Disease burden estimates based on hospital data are aff ected by distance from the hospital, and the amount of underestimation of disease burden diff ers by both disease and sex

    The Tools for Integrated Management of Childhood Illness (TIMCI) study protocol: a multi-country mixed-method evaluation of pulse oximetry and clinical decision support algorithms.

    Get PDF
    Effective and sustainable strategies are needed to address the burden of preventable deaths among children under-five in resource-constrained settings. The Tools for Integrated Management of Childhood Illness (TIMCI) project aims to support healthcare providers to identify and manage severe illness, whilst promoting resource stewardship, by introducing pulse oximetry and clinical decision support algorithms (CDSAs) to primary care facilities in India, Kenya, Senegal and Tanzania. Health impact is assessed through: a pragmatic parallel group, superiority cluster randomised controlled trial (RCT), with primary care facilities randomly allocated (1:1) in India to pulse oximetry or control, and (1:1:1) in Tanzania to pulse oximetry plus CDSA, pulse oximetry, or control; and through a quasi-experimental pre-post study in Kenya and Senegal. Devices are implemented with guidance and training, mentorship, and community engagement. Sociodemographic and clinical data are collected from caregivers and records of enrolled sick children aged 0-59 months at study facilities, with phone follow-up on Day 7 (and Day 28 in the RCT). The primary outcomes assessed for the RCT are severe complications (mortality and secondary hospitalisations) by Day 7 and primary hospitalisations (within 24 hours and with referral); and, for the pre-post study, referrals and antibiotic. Secondary outcomes on other aspects of health status, hypoxaemia, referral, follow-up and antimicrobial prescription are also evaluated. In all countries, embedded mixed-method studies further evaluate the effects of the intervention on care and care processes, implementation, cost and cost-effectiveness. Pilot and baseline studies started mid-2021, RCT and post-intervention mid-2022, with anticipated completion mid-2023 and first results late-2023. Study approval has been granted by all relevant institutional review boards, national and WHO ethical review committees. Findings will be shared with communities, healthcare providers, Ministries of Health and other local, national and international stakeholders to facilitate evidence-based decision-making on scale-up.Study registration: NCT04910750 and NCT05065320

    Validating physician-certified verbal autopsy and probabilistic modeling (InterVA) approaches to verbal autopsy interpretation using hospital causes of adult deaths

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common method for determining cause of death is certification by physicians based either on available medical records, or where such data are not available, through verbal autopsy (VA). The physician-certification approach is costly and inconvenient; however, recent work shows the potential of a computer-based probabilistic model (InterVA) to interpret verbal autopsy data in a more convenient, consistent, and rapid way. In this study we validate separately both physician-certified verbal autopsy (PCVA) and the InterVA probabilistic model against hospital cause of death (HCOD) in adults dying in a district hospital on the coast of Kenya.</p> <p>Methods</p> <p>Between March 2007 and June 2010, VA interviews were conducted for 145 adult deaths that occurred at Kilifi District Hospital. The VA data were reviewed by a physician and the cause of death established. A range of indicators (including age, gender, physical signs and symptoms, pregnancy status, medical history, and the circumstances of death) from the VA forms were included in the InterVA for interpretation. Cause-specific mortality fractions (CSMF), Cohen's kappa (κ) statistic, receiver operating characteristic (ROC) curves, sensitivity, specificity, and positive predictive values were applied to compare agreement between PCVA, InterVA, and HCOD.</p> <p>Results</p> <p>HCOD, InterVA, and PCVA yielded the same top five underlying causes of adult deaths. The InterVA overestimated tuberculosis as a cause of death compared to the HCOD. On the other hand, PCVA overestimated diabetes. Overall, CSMF for the five major cause groups by the InterVA, PCVA, and HCOD were 70%, 65%, and 60%, respectively. PCVA versus HCOD yielded a higher kappa value (κ = 0.52, 95% confidence interval [CI]: 0.48, 0.54) than the InterVA versus HCOD which yielded a kappa (κ) value of 0.32 (95% CI: 0.30, 0.38). Overall, (κ) agreement across the three methods was 0.41 (95% CI: 0.37, 0.48). The areas under the ROC curves were 0.82 for InterVA and 0.88 for PCVA. The observed sensitivities and specificities across the five major causes of death varied from 43% to 100% and 87% to 99%, respectively, for the InterVA/PCVA against the HCOD.</p> <p>Conclusion</p> <p>Both the InterVA and PCVA compared well with the HCOD at a population level and determined the top five underlying causes of death in the rural community of Kilifi. We hope that our study, albeit small, provides new and useful data that will stimulate further definitive work on methods of interpreting VA data.</p

    Childhood pneumonia diagnostics: community health workers’ and national stakeholders’ differing perspectives of new and existing aids

    No full text
    Background: Pneumonia heavily contributes to global under-five mortality. Many countries use community case management to detect and treat childhood pneumonia. Community health workers (CHWs) have limited tools to help them assess signs of pneumonia. New respiratory rate (RR) counting devices and pulse oximeters are being considered for this purpose. Objective: To explore perspectives of CHWs and national stakeholders regarding the potential usability and scalability of seven devices to aid community assessment of pneumonia signs. Design: Pile sorting was conducted to rate the usability and scalability of 7 different RR counting aids and pulse oximeters amongst 16 groups of participants. Following each pile-sorting session, a focus group discussion (FGD) explored participants’ sorting rationale. Purposive sampling was used to select CHWs and national stakeholders with experience in childhood pneumonia and integrated community case management (iCCM) in Cambodia, Ethiopia, Uganda and South Sudan. Pile-sorting data were aggregated for countries and participant groups. FGDs were audio recorded and transcribed verbatim. Translated FGDs transcripts were coded in NVivo 10 and analysed using thematic content analysis. Comparative analysis was performed between countries and groups to identify thematic patterns. Results: CHWs and national stakeholders across the four countries perceived the acute respiratory infection (ARI) timer and fingertip pulse oximeter as highly scalable and easy for CHWs to use. National stakeholders were less receptive to new technologies. CHWs placed greater priority on device acceptability to caregivers and children. Both groups felt that heavy reliance on electricity reduced potential scalability and usability in rural areas. Device simplicity, affordability and sustainability were universally valued. Conclusions: CHWs and national stakeholders prioritise different device characteristics according to their specific focus of work. The views of all relevant stakeholders, including health workers, policy makers, children and parents, should be considered in future policy decisions, research and development regarding suitable pneumonia diagnostic aids for community use

    Usability of pulse oximeters used by community health and primary care workers as screening tools for severe illness in children under five in low resource settings: A cross-sectional study in Cambodia, Ethiopia, South Sudan, and Uganda.

    No full text
    Timely recognition and referral of severely ill children is especially critical in low-resource health systems. Pulse-oximeters can improve health outcomes of children by detecting hypoxaemia, a severity indicator of the most common causes of death in children. Cost-effectiveness of pulse-oximeters has been proven in low-income settings. However, evidence on their usability in community health settings is scarce.This study explores the usability of pulse-oximeters for community health and primary care workers in Cambodia, Ethiopia, South Sudan, and Uganda. We collected observational data, through a nine-task checklist, and survey data, using a five-point Likert scale questionnaire, capturing three usability aspects (effectiveness, efficiency, and satisfaction) of single-probe fingertip and multi-probe handheld devices. Effectiveness was determined by checklist completion rates and task completion rates per checklist item. Efficiency was reported as proportion of successful assessments within three attempts. Standardized summated questionnaire scores (min = 0, max = 100) determined health worker's satisfaction. Influencing factors on effectiveness and satisfaction were explored through hypothesis tests between independent groups (device type, cadre of health worker, country). Checklist completion rate was 78.3% [CI 72.6-83.0]. Choosing probes according to child age showed the lowest task completion rate of 68.7% [CI 60.3%-76.0%]. In 95.6% [CI 92.7%-97.4%] of assessments a reading was obtained within three attempts. The median satisfaction score was 95.6 [IQR = 92.2-99.0]. Significantly higher checklist completion rates were observed with single-probe fingertip devices (p<0.001) and children 12-59 months (p<0.001). We found higher satisfaction scores in South Sudan (p<0.001) and satisfaction varied slightly between devices. From a usability perspective single-probe devices for all age groups should be prioritized for scaled implementation. Further research on easy to use and accurate devices for infants is much needed

    Description of checklist variables.

    No full text
    Timely recognition and referral of severely ill children is especially critical in low-resource health systems. Pulse-oximeters can improve health outcomes of children by detecting hypoxaemia, a severity indicator of the most common causes of death in children. Cost-effectiveness of pulse-oximeters has been proven in low-income settings. However, evidence on their usability in community health settings is scarce.This study explores the usability of pulse-oximeters for community health and primary care workers in Cambodia, Ethiopia, South Sudan, and Uganda. We collected observational data, through a nine-task checklist, and survey data, using a five-point Likert scale questionnaire, capturing three usability aspects (effectiveness, efficiency, and satisfaction) of single-probe fingertip and multi-probe handheld devices. Effectiveness was determined by checklist completion rates and task completion rates per checklist item. Efficiency was reported as proportion of successful assessments within three attempts. Standardized summated questionnaire scores (min = 0, max = 100) determined health worker’s satisfaction. Influencing factors on effectiveness and satisfaction were explored through hypothesis tests between independent groups (device type, cadre of health worker, country). Checklist completion rate was 78.3% [CI 72.6–83.0]. Choosing probes according to child age showed the lowest task completion rate of 68.7% [CI 60.3%-76.0%]. In 95.6% [CI 92.7%-97.4%] of assessments a reading was obtained within three attempts. The median satisfaction score was 95.6 [IQR = 92.2–99.0]. Significantly higher checklist completion rates were observed with single-probe fingertip devices (p</div
    corecore