610 research outputs found

    TiOCl, an orbital-ordered system?

    Full text link
    We present first principles density functional calculations and downfolding studies of the electronic and magnetic properties of the layered quantum spin system TiOCl. We discuss explicitely the nature of the exchange pathes and attempt to clarify the concept of orbital ordering in this material. An analysis of the electronic structure of slightly distorted structures according to the phononic modes allowed in this material suggests that this system is subject to large orbital fluctuations driven by the electron-phonon coupling. Based on these results, we propose a microscopic explanation of the behavior of TiOCl near the phase transition to a spin-gapped system.Comment: Some figures are compressed, for higher quality please contact the author

    Anomalous electronic Raman scattering in Na_xCoO_2 H_2O

    Get PDF
    Raman scattering experiments on Na_{x}CoO_2 yH_2O single crystals show a broad electronic continuum with a pronounced peak around 100 cm-1 and a cutoff at approximately 560 cm-1over a wide range of doping levels. The electronic Raman spectra in superconducting and non-superconducting samples are similar at room temperature, but evolve in markedly different ways with decreasing temperature. For superconducting samples, the low-energy spectral weight is depleted upon cooling below T* sim 150K, indicating a opening of a pseudogap that is not present in non-superconducting materials. Weak additional phonon modes observed below T* suggest that the pseudogap is associated with charge ordering.Comment: 5 pages, 4 figures, for further information see www.peter-lemmens.d

    Collective Singlet Excitations and Evolution of Raman Spectral Weights in the 2D Spin Dimer Compound SrCu2(BO3)2

    Full text link
    We present a Raman light scattering study of the two-dimensional quantum spin system SrCu2(BO3)2 and show that the magnetic excitation spectrum has a rich structure, including several well-defined bound state modes at low temperature, and a scattering continuum and quasielastic light scattering contributions at high temperature. The key to the understanding of the unique features of SrCu2(BO3)2 is the presence of strong interactions between well-localized triplet excitations in the network of orthogonal spin dimers realized in this compound. Based on our analysis of the Heisenberg model relevant for this material, we argue that the collective excitations involving two and three-particle singlet bound states have large binding energies and are observed as well-defined peaks in the Raman spectrum.Comment: 5 pages, 2 figures. Revised version, to appear in Phys. Rev. Lett. (2000

    Evidence for local lattice distortions in giant magnetocapacitive CdCr2S4

    Full text link
    Raman scattering experiments on CdCr2S4 single crystals show pronounced anomalies in intensity and frequency of optical phonon modes with an onset temperature T*=130 K that coincides with the regime of giant magnetocapacitive effects. A loss of inversion symmetry and Cr off-centering are deduced from the observation of longitudinal optical and formerly infrared active modes for T<T_c=84 K. The intensity anomalies are attributed to the enhanced electronic polarizability of displacements that modulate the Cr-S distance and respective hybridization. Photo doping leads to an annihilation of the symmetry reduction. Our scenario of multiferroic effects is based on the near degeneracy of polar and nonpolar modes and the additional low energy scale due to hybridization.Comment: 4 pages, 6 figure

    Microscopic Evidence of Spin State Order and Spin State Phase Separation in Layered Cobaltites RBaCo2O5.5 with R=Y, Tb, Dy, and Ho

    Full text link
    We report muon spin relaxation measurements on the magnetic structures of RBaCo_2O_5.5 with R=Y, Tb, Dy, and Ho. Three different phases, one ferrimagnetic and two antiferromagnetic, are identified below 300 K. They consist of different ordered spin state arrangements of high-, intermediate-, and low-spin Co^3+ of CoO_6 octahedra. Phase separation into well separated regions with different spin state order is observed in the antiferromagnetic phases. The unusual strongly anisotropic magnetoresistance and its onset at the FM-AFM phase boundary is explained.Comment: 4 pages, accepted for publication in Phys. Rev. Let

    Interplay of Spin and Lattice Degrees of Freedom in the Frustrated Antiferromagnet CdCr_2O_4: High-field and Temperature Induced Anomalies of the Elastic Constants

    Full text link
    Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr_2O_4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the [111] direction with theory based on an exchange-striction mechanism leads to an estimate of the strength of the magneto-elastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction discussed and we compare the spin-phonon coupling in CdCr_2O_4 in both the ordered and disordered states.Comment: 12 pages, 8 figures; Appendix added,To appear in Phys Rev.

    Magnetism of a tetrahedral cluster spin-chain

    Full text link
    We discuss the magnetic properties of a dimerized and completely frustrated tetrahedral spin-1/2 chain. Using a combination of exact diagonalization and bond-operator theory the quantum phase diagram is shown to incorporate a singlet-product, a dimer, and a Haldane phase. In addition we consider one-, and two-triplet excitations in the dimer phase and evaluate the magnetic Raman cross section which is found to be strongly renormalized by the presence of a two-triplet bound state. The link to a novel tellurate materials is clarified.Comment: 8 pages, 8 figure

    Spin gap behavior and charge ordering in \alpha^{\prime}-NaV_2O_5 probed by light scattering

    Full text link
    We present a detailed analysis of light scattering experiments performed on the quarter-filled spin ladder compound α\alpha^\prime-NaV2_{2}O5_{5} for the temperature range 5 K\leT\le300 K. This system undergoes a phase transition into a singlet ground state at T=34 K accompanied by the formation of a super structure. For T\leq34 K several new modes were detected. Three of these modes are identified as magnetic bound states. Experimental evidence for charge ordering on the V sites is detected as an anomalous shift and splitting of a V-O vibration at 422 cm1^{-1} for temperatures above 34 K. The smooth and crossover-like onset of this ordering at TCO_{\rm CO}= 80 K is accompanied by pretransitional fluctuations both in magnetic and phononic Raman scattering. It resembles the effect of stripe order on the super structure intensities in La2_2NiO4+δ_{4+\delta}.Comment: 36 pages, 11 figures, accepted for publication in PRB (sept.99

    Magnetic bound states in the quarter-filled ladder system αNaV2O5\alpha'-NaV_{2}O_{5}}

    Full text link
    Raman scattering in the quarter-filled spin ladder system alpha'-NaV_2O_5 shows in the dimerized singlet ground state (TTSP=35KT \leq T_{SP}=35K) an unexpected sequence of three magnetic bound states. Our results suggest that the recently proposed mapping onto an effective spin chain for T>TSPT > T_{SP} has to be given up in favor of the full topology and exchange paths of a ladder in the dimerized phase for T<TSPT < T_{SP}. As the new ground state we propose a dynamic superposition of energetically nearly degenerate dimer configurations on the ladder.Comment: 5 pages, 4 figures, to be published in PRB, brief reports, Dec. 199
    corecore