13 research outputs found

    Screening of BCS1L mutations in severe neonatal disorders suspicious for mitochondrial cause

    No full text
    The BCS1L gene encodes a chaperone responsible for assembly of respiratory chain complex III (CIII). A homozygous point mutation (232A -> G) has been found as the genetic etiology for fetal growth retardation, amino aciduria, cholestasis, iron overload, lactic acidosis, and early death (GRACILE) syndrome (MIM 603358). Variable phenotypes have been found with other mutations. Our aim was to assess whether 232A -> G or other BCS1L mutations were present in infants (n = 21) of Finnish origin with severe, lethal disease compatible with mitochondrial disorder. A further aim was to confirm the GRACILE genotype-phenotype constancy (n = 8). Three new cases with homozygous 232A -> G mutation were identified; all had the primary GRACILE characteristics. No other mutations were found in the gene in other cases. All infants with GRACILE syndrome had the typical mutation. In conclusion, the rather homogenous population of Finns seems to have a specific BCS1L mutation that, as homozygous state, causes GRACILE syndrome, whereas other mutations are rare or not occurring. Thus, the novel clinical implication of this study is to screen for BCS1L mutations only if CIII is dysfunctioning or lacking Rieske protein, and to assess 232A -> G mutation in cases with GRACILE syndrome

    Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata

    No full text
    Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.Peer reviewe

    FinnGen provides genetic insights from a well-phenotyped isolated population

    No full text
    corecore