64 research outputs found
Superior high temperature properties available in directionally solidified nickel-base eutectic alloys
Alloy has high temperature properties exceeding strength of all known superalloys. It exhibits inherent resistance to oxidation and high temperature hot corrosion
Quaternary and quinary modifications of eutectic superalloys strengthened by delta Ni3Cb lamellae and gamma prime Ni3Al precipitates
By means of a compositional and heat treatment optimization program based on the quaternary gamma/gamma prime-delta, a tantalum modified gamma/gamma prime-delta alloy with improved shear and creep strength combined with better cyclic oxidation resistance was identified. Quinary additions, quaternary adjustments, and heat treatment were investigated. The tantalum modified gamma/gamma prime-delta alloy possessed a slightly higher liquidus temperature and exhibited rupture strength exceeding NASA VIA by approximately three and one-half Larson-Miller parameters (C = 20) above 1000 C. Although improvements in longitudinal mechanical properties were achieved, the shear and transverse strength property goals of the program were not met and present a continuing challenge to the alloy metallurgist
Eutectic superalloys strengthened by sigma, Ni3CB lamellae and gamma prime, Ni3Al precipitates
By means of a screening and solidification optimization study of certain alloys located on the gamma-sigma liquidus surface within the Ni-Cb-Cr-Al system, alloys with high temperature properties superior to those of all known superalloys were defined. One alloy, Ni - 19.7w/o Cb - 6.0w/o Cr - 2.5w/o Al, directionally solidified at 3 cm/hr met or exceeded each program goal. A second alloy, Ni-21.75 w/o Cb-2.55 w/o Al, although deficient in its inherent oxidation resistance, met the other program goals and combined a remarkable insensitivity of composite microstructure to solidification parameters with excellent low temperature toughness. This investigation demonstrated that useful properties for gas turbine airfoil application have been achieved by reinforcing a strong and tough gamma solid solution matrix containing precipitated gamma prime by a lamellar intermetallic compound Ni3 Cb having greater strength at elevated temperature
High temperature static strain gage alloy development program
The literature, applicable theory and finally an experimental program were used to identify new candidate alloy systems for use as the electrical resistance elements in static strain gages up to 1250K. The program goals were 50 hours of use in the environment of a test stand gas turbine engine with measurement accuracies equal to or better than 10 percent of full scale for strains up to + or - 2000 microstrain. As part of this effort, a computerized electrical resistance measurement system was constructed for use at temperatures between 300K and 1250K and heating and cooling rates of 250K/min and 10K/min. The two best alloys were an iron-chromium-aluminum alloy and a palladium base alloy. Although significant progress was made, it was concluded that a considerable additional effort would be needed to fully optimize and evaluate these candidate systems
- …