23 research outputs found

    On the feasibility of using IEEE 802.11ad mmWave for accurate object detection

    Get PDF
    Millimeter wave (mmWave) bands are considered highly for localization and object detection. In this paper we assess the potential of commercial IEEE 802.11ad mmWave equipment to offer accurate object detection, ultimately providing models of the physical environment. Unlike solutions using bespoke mmWave equipment for detection, the use of IEEE 802.11ad ensures a low-cost system, and one in which detection can be integrated with communication, creating potential for innovative applications. Our approach is to build a laboratory testbed in which we capture reflected mmWave signals that are generated and transmitted by a commercial off-the-shelf (COTS) IEEE 802.11ad mmWave device. From the measured channel impulse response, we measured the distance from the mmWave transceiver to the objects in the environment, by some simple signal processing techniques. By knowing the angle of mmWave departure/arrival and this measured distance, we can develop a 2D model of the physical environment. We report on the achieved accuracy, which is 2cm in most experiments, and discuss technology limitations and research opportunities

    Unraveling the Morphological Variation of <i>Triatoma infestans</i> in the Peridomestic Habitats of Chuquisaca Bolivia: A Geometric Morphometric Approach

    No full text
    Morphometrics has been used on Triatomines, a well-known phenotypically variable insect, to understand the process of morphological plasticity and infer the changes of this phenomenon. The following research was carried out in two regions of the inter-Andean valleys and two Chaco regions of Chuquisaca-Bolivia. Triatoma infestans adults were collected from the peridomestic (pens and chicken coops) along a geographic gradient in order to evaluate the morphological differentiation between groups and their pattern of sexual shape dimorphism. Geometric morphometric methods were applied on the wings and heads of T. infestans. The main findings include that we proved sexual dimorphism in heads and wings, determined the impact of environmental factors on size and shape and validated the impact of nutrition on head shape variation. These results show that geometric morphometric procedures can be used to provide key insight into the biological adaptation of T. infestans on different biotic (nutrition) and abiotic (environment) conditions, which could serve in understanding and evaluating infestation processes and further vector control programs

    Web-based platform for evaluation of RF-based indoor localization algorithms

    No full text
    The experimental efforts for optimizing the performance of RF-based indoor localization algorithms for specific environments and scenarios is time consuming and costly. In this work, we address this problem by providing a publicly accessible platform for streamlined experimental evaluation of RF-based indoor localization algorithms, without the need of a physical testbed infrastructure. We also offer an extensive set of raw measurements that can be used as input data for indoor localization algorithms. The datasets are collected in multiple testbed environments, with various densities of measurement points, using different measuring devices and in various scenarios with controlled RF interference. The platform encompasses two core services: one focused on storage and management of raw data, and one focused on automated calculation of metrics for performance characterization of localization algorithms. Tools for visualization of the raw data, as well as software libraries for convenient access to the platform from MATLAB and Python, are also offered. By contrasting its fidelity and usability with respect to remote experiments on dedicated physical testbed infrastructure, we show that the virtual platform produces comparative performance results while offering significant reduction in the complexity, time and labor overheads

    Risk Assessment and Area-Wide Crop Rotation to Keep Western Corn Rootworm Below Damage Thresholds and Avoid Insecticide Use in European Maize Production

    No full text
    The Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has been a seri-ous quarantine pest to maize in Europe since the mid-1990s. The integrated pest management of WCR requires an accurate knowledge of the factors that contribute most to risks of crop damage, as well as knowledge of effective area-wide strategies based on agronomic measures, such as crop rotation. In Italy and Croatia, agronomic and cultural factors in fields damaged by WCR were eval-uated through a long-term survey. Based on the survey results, high-WCR densities contribute most to risks of damage to maize. Extensive field research in north-eastern Italy compared large areas of continuous maize production with areas under different crop rotation systems (i.e., a structural one with one-time maize planting in a three-year rotation and a flexible one with continuous maize planting interrupted when beetle populations exceed the threshold). The objective was to evaluate the effectiveness of different rotation regimes as possible best practices for WCR management. Captures of beetles in yellow sticky traps, root damage, larval densities, and damage to maize plants (e.g., lodging) were assessed at the center of each area. The results demonstrated the both structural and flexible crop rotation systems were effective strategies for maintaining WCR below damage threshold densities without the need for insecticides
    corecore