2 research outputs found
AaTs-1: A Tetrapeptide from Androctonus australis Scorpion Venom, Inhibiting U87 Glioblastoma Cells Proliferation by p53 and FPRL-1 Up-Regulations
International audienceGlioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer
Strengthening Anti-Glioblastoma Effect by Multi-Branched Dendrimers Design of a Scorpion Venom Tetrapeptide
International audienceGlioblastoma is the most aggressive and invasive form of central nervous system tumors due to the complexity of the intracellular mechanisms and molecular alterations involved in its progression. Unfortunately, current therapies are unable to stop its neoplastic development. In this context, we previously identified and characterized AaTs-1, a tetrapeptide (IWKS) from Androctonus autralis scorpion venom, which displayed an anti-proliferative effect against U87 cells with an IC50 value of 0.57 mM. This peptide affects the MAPK pathway, enhancing the expression of p53 and altering the cytosolic calcium concentration balance, likely via FPRL-1 receptor modulation. In this work, we designed and synthesized new dendrimers multi-branched molecules based on the sequence of AaTs-1 and showed that the di-branched (AaTs-1-2B), tetra-branched (AaTs-1-4B) and octo-branched (AaTs-1-8B) dendrimers displayed 10- to 25-fold higher effects on the proliferation of U87 cells than AaTs-1. We also found that the effects of the newly designed molecules are mediated by the enhancement of the ERK1/2 and AKT phosphorylated forms and by the increase in p53 expression. Unlike AaTs-1, AaTs-1-8B and especially AaTs-1-4B affected the migration of the U87 cells. Thus, the multi-branched peptide synthesis strategy allowed us to make molecules more active than the linear peptide against the proliferation of U87 glioblastoma cells