13 research outputs found
A Minireview Of Cellulose Nanocrystals And Its Potential Integration As Co-product In Bioethanol Production
Cellulose nanocrystals appeared as important bio-based products and the collected information in term of production, characterization and application suggest that this nanomaterial could be easily extrapolated to bioethanol production. This review describes recent published syntheses using chemical and enzymatic hydrolyses and different preparations such as high pressure homogenization. Their industrial and medical applications, such as controled of delivery carriers, suggest a large projection of this nanomaterial. The most important aspect in this collected data is the potential to decrease significantly the final cost of the enzymes or the hydrolysis pre-treatment of lignocellulosic materials of all bioethanol processes in such a way that it could be economically feasible from materials such as bagasse, straw or wood resources.562672677Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M., (2008) BioResources, 3, p. 929Goelzer, F.D.E., Faria-Tischer, P.C.S., Vitorino, J.C., Sierakowski, M.R., Tischer, C.A., (2009) Mat. Sci. Eng. C, 29, p. 546Wang, N., Ding, E., Cheng, R., (2008) Langmuir, 24, p. 5Pu, Y., Zhang, J., Elder, T., Deng, Y., Gatenholm, P., Ragauskas, A.J., (2007) Composites: Part B: Eng, 38, p. 360Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C., (2008) Biomacromolecules, 9, p. 57Moon, R.J., (2008) MacGraw-Hill Year Book of Science and Technology, pp. 225-228. , McGraw Hill, N. YorkPostek, M., Brown, E., (2009) Proc, , SPIE 10.1117/2.1200903.1474Ragauskas, A.J., (2007) Cellulase Microfibrills and Nanotechnology, , http://ipst.gatech.edu/faculty_new/faculty_bios/ragauskas/ student_presentations/Portugal_Nanocellulose.pdf, June 2007, PortugalHamad, W., (2006) Can. J. Chem. Eng, 84, p. 513Gray, D.G., (2008) Towards Understanding Wood, Fibre, and Paper-deeper Knowledge Through Modern Analytical Tools, 50. , Turku / Åbo, May 2008, Final seminar of COST Action E41 & Workshop of Action EWegner, T.H., Jones, P.E., (2006) Cellulose, 13, p. 115Postek, M.T., Vladar, A., Dagata, J., Farkas, N., Ming, B., Sabo, R., Wegner, T.H., Beecher, J., (2008) Proc. SPIE, 7042, pp. 70420D. , 2008, doi:10.1117/12.797575Lima, M.M.S., Borsali, R., (2004) Macromol. Rapid Commun, 25, p. 771Gacitua, W., Ballerini, A., Zhang, J., (2005) Maderas- Cienc. Tecnol, 7, p. 159Samir, M.A.S.A., Alloin, F., Dufresne, A., (2005) Biomacromolecules, 6, p. 612Niska, K.O., (2008) Eur. Conf. Compos. Mat. Jene, , Stockholm. SwedenSilva, D.J., D'almeida, M.L.O., (2009) O Papel, 70, p. 34Habibi, Y., Lucia, L.A., Rojas, O.J., (2010) Chem. Rev, 110, p. 3479Cao, X., Habibi, Y., Magalhães, W.L.E., Rojas, O.J., Lucia, L.A., (2011) Curr. Sci, 100, p. 1172Dufresne, A., (2006) J. Nanosci. Nanotechnol, 6, p. 322Dufresne, A., (2008) Can. J. Chem, 86, p. 484Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Peijs, T., (2010) J. Mater. Sci, 45, p. 1Siró, I., Plackett, D., (2010) Cellulose, 17, pp. 459-494Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., (2011) Chem. Soc. Rev, , DOI: 10.1039/c0cs00108bDujardin, E., Blaseby, M., Mann, S., (2003) J. Mater. Chem, 13, p. 696Beck-Candanedo, S., Roman, M., Gray, D.G., (2005) Biomacromolecules, 6, p. 1048Bondeson, D., Mathew, A., Oksman, K., (2006) Cellulose, 13, p. 171Ramires, E.C., Dufresne, A., (2011) Tappi J, 10, p. 9Habibi, Y., Foulon, L., Aguié-Béghin, V., Molinari, M., Douillard, R., (2007) J. Colloid Interf. Sci, 316, p. 388Van Den, O., Berg, J.R., Capadona, C., (2007) Weder, Biomacromolecules, 8, p. 1353Wang, N., Ding, E., Cheng, R., (2007) Polymer, 48, p. 3486Purkait, B.S., Ray, D., Sengupta, S., Kar, T., Mohanty, A., Misra, M., (2011) Ind. Eng. Chem. Res, 50, p. 871Braun, R., Dorgan, J.R., Chandler, J.P., (2008) Biomacromolecules, 9, p. 1255Jean, B., Dubreuil, F., Heux, L., Cousin, F., (2008) Langmuir, 24, p. 3452Filson, P.B., Dawson-Andoh, B.E., (2009) Bioresource Technol, 100, p. 2259Filson, P.B., Dawson-Andoh, B.E., (2009) Bioresource Technol, 100, p. 6661Pandey, J.P., Kim, C.S., Chu, W.S., Lee, C.S., Jang, D.Y., Ahn, S.H., (2009) E-Polymers, 102, p. 1. , http://www.e-polymers.orgKontturi, E., Vuorinen, T., (2009) Cellulose, 16, p. 65Li, Q., Renneckar, S., (2009) Cellulose, 16, p. 1025Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Wood, D.F., Mattoso, L.H.C., Orts, W.J., Imam, S.H., (2009) 11th Intern. Conf. on Advanced Materials-ICAM-2009, , September, Rio de Janeiro, BrazilRosa, M.F., Medeiros, E.S., Malmonge, J.A., Wood, D.F., Mattoso, L.H.C., Orts, W.J., Imam, S.H., (2008) 18° Congr. Brasil. Eng. Ciênc. Mat.-CBIMAT, , November, Porto de Galinhas, PE, Abstr 202-163Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J., (2009) Carbohydr. Polym, 76, p. 94Turbak, A.F., Snyder, F.W., Sandberg, K.R., (1983) J. Appl. Polym. Sci. Appl. Polym. Symp, 37, p. 815Seydibeyoglu, M.O., Oksman, K., (2008) Compos. Sci. Technol, 68, p. 908Wagberg, L., Decher, G., Norgren, M., Lindstrom, T., Ankerfors, M., Axnas, K., (2008) Langmuir, 24, p. 784Lee, S.Y., Chun, S.J., Kang, I.A., Park, J.Y., (2009) J. Ind. Eng. Chem, 15, p. 50Bendahou, A., Kaddami, H., Dufresne, A., (2010) Eur. Polym. J, 46, pp. 609-620Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Lindstrom, T., (2007) Biomacromolecules, 8, p. 1934Jiang, L., Chen, X., Li, Z., (2008) Huaxue Yu Shengwu Gongcheng, 25, p. 63Filson, P.B., Dawson-Andoh, B.E., Schwegler-Berry, D., (2009) Green Chem, 11, p. 1808George, J., Ramana, K.V., Bawa, A.S., (2011) Siddaramaiah Inter. J. Biol. Macromol, 48, p. 50Satyamurthy, P., Jain, P., Balasubramanya, R.H., Vigneshwaran, N., (2011) Carbohydr. Polym, 83, p. 122Dong, S., Roman, M., (2007) J. Am. Chem. Soc, 129, p. 13810Habibi, Y., Dufresne, A., (2008) Biomacromolecules, 9, p. 1974Jiang, L., Morelius, E., Zhang, J., Wolcott, M., Holbery, J., (2008) J. Composit. Mat, 42, p. 2629Cho, M.J., Park, B.D., (2011) J. Ind. Eng. Chem, 17, p. 36Lemes, A.P., Gonçalves, R., Moretti, A.M., Marcato, P.D., Durán, N., (2008) VII Meeting of SBPMat-2008 - VII Ann. Meeting of the Braz. Soc. Res. Mat., 566 B. , September, Guarujá-SP, Brasil AbstrTen, E., Turtle, J., Bahr, D., Jiang, L., Wolcott, M., (2010) Polymer, 51, p. 2652Capadona, J.R., Shanmuganathan, K., Trittschuh, S., Seidel, S., Rowan, S.J., Weder, C., (2009) Biomacromolecules, 10, p. 712Bendahou, A., Kaddami, H., Raihane, M., Habibi, Y., Dufresne, A., (2009) Rev. Roumaine Chim, 54, p. 571Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M.I., Goyanes, S., (2009) Macromol. Mat. Eng, 294, p. 169De Menezes, A.J., Siqueira, G., Curvelo, A.A.S., Dufresne, A., (2009) Polymer, 50, p. 4552Oksman, K., Mathew, A.P., Sain, M., (2009) Plastics Rubber Compos, 38, p. 396Morandi, G., Heath, L., Thielemans, W., (2009) Langmuir, 25, p. 8280Siqueira, G., Abdillahi, H., Brás, J., Dufresne, A., (2010) Cellulose, 17, pp. 289-298Kvien, I., Tanem, B.S., Oksman, K., (2005) Biomacromolecules, 6, p. 3160Pandey, J.K., Lee, C.S., Ahn, S.H., (2010) J.. Appl. Polym. Sci, 115, p. 2493Liu, D.Y., Yuan, X.W., Bhattacharyya, D., Easteal, A.J., (2010) Express Polym. Lett, 4, p. 26Shanmuganathan, K., Capadona, J.R., Rowan, S.J., Weder, C., (2010) J. Mat. Chem, 20, p. 180Mikkonen, K.S., Mathew, A.P., Pirkkalainen, K., Serimaa, R., Xu, C., Willfor, S., Oksman, S., Tenkanen, K., (2010) Cellulose, 17, pp. 69-81De Mesquita, J.C., Donnici, C.L., Pereira, F.V., (2010) Biomacromolecules, 11, p. 473Auad, M.L., Mosiewicki, M.A., Richardson, T., Aranguren, M.I., Marcovich, N.E., (2010) J. Appl. Polym. Sci, 115, p. 1215Mosiewicki, M.A., Wik, V.M., Aranguren, M.I., (2011) Plastic Res. Online, pp. 1-2. , 10.1002/spepro.003617Wik, V.M., Aranguren, M.I., Mosiewicki, M.A., (2011) Polym. Eng. Sci, , DOI: 10.1002/pen.21939Rusli, R., Shanmuganathan, K., Rowan, S.J., Weder, C., Eichhorn, S.J., (2011) Biomacromolecules, 12, p. 1363Liu, H., Liu, D., Yao, F., Wu, Q., (2010) Bioresource Technol, 101, p. 5685Dufresne, A., (2010) Molecules, 15, p. 4111Siqueira, G., Tapin-Lingua, S., Bras, J., Perez, D.S., Dufresne, A., (2011) Cellulose, 18, p. 57Gardner, D.J., (2011) Wood Fiber Sci, 43, p. 1Wang, D., Li, G., Huang, Y., (2004) Faming Zhuanli Shenqing Gongkai Shuomingshu, , Patent CN 1491976 A 20040428Roman, M., Dong, S., Hirani, A.A., Lee, Y.W., 235th ACS national meeting (2008) Abstr. CELL-030, , New Orleans, LA, United StatesHirani, A., (2009) Biomedical Engineering and Sciences, , Master of Science Thesis, Virginia Polytechnic Institute and State UniversityWang, H., Roman, M., (2011) Biomacromolecules, 12, p. 1585Jackson, J.K., Letchford, K., Wasserman, B.Z., Ye, L., Hamad, W.Y., Burt, H.M., (2011) Inter. J. Nanomed, 6, p. 321Postek, M.T., Vladar, A., Dagata, J., Farkas, N., Ming, B., Wagner, R., Raman, A., Beecher, J., (2011) Meas. Sci. Technol, 22, p. 024005Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y., (2005) Bioresource Technol, 96, p. 1959Leistritz, F.L., Senechal, D.M., Stower, M.D., McDonald, W.F., Safron, C.M., Hodur, N.M., (2006) Agribussines and Applied Economic Report No 590, , http://ageconsearch.umn.edu/handle/23500Winter, W.T., (2007) Div. Cell. Renew. Mat., , 233rd ACS Nat. Meeting, Chicago, Il. MarchDurán, N., Lemes, A.P., Durán, M., Marcato, P.D., Freer, J., Baeza, J., Franco, H., (2010) Intern. Conf. Food Agric. Appl. Nanotechnol (NanoAgri-2010), , São Carlos, S.P., BrazilFranco, H., Mendonça, R.T., Marcato, P.D., Durán Freer, J.N., Baeza, J., (2011) Bioresource Technol SubmittedOksman, K., Etang, J.A., Mathew, A.P., Jonoobi, M., (2011) Biomass Bioener, 35, p. 146Chen, Y., Stipanovic, A.J., Winter, W.T., Wilson, D.B., Kim, Y.J., (2007) Cellulose, 14, p. 283Goodrich, J.D.F., Winter, W.T., (2007) Biomacromolecules, 8, p. 252Winandy, J.E., Rudie, A.W., Williams, R.S., Wegner, T.H., (2008) Forest Prod. J, 58, p. 8(2009) Energy Biomass Program, , http://www1.eere.energy.gov/biomass/pdfs/biomass_deep_dive_pir.pdf, US-DEBP-2009: US. Depart., September(2010) Novozymes-2010, , http://www.novozymes.com/en/MainStructure/PressAndPublications/Newsitems/ 2010/Car+on+paper+waste.htm(2011) Domtar and FPInnovations, , http://www.fpinnovations.ca/pdfs/BinderEn.pdf, Assessed in May 14Chirat, C., Lachenal, D., Dufresne, A., (2010) Cellulose Chem. Technol, 44, p. 59Berrocal, A., Baeza, J., Rodriguez, J., Espinosa, M., Freer, J., (2004) J. Chilean Chem. Soc, 49, p. 25
Preparation And Characterization Of Maleic Anhydride Grafted Poly (hydroxybutirate-co-hydroxyvalerate)-phbv-g-ma
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)A compatibilizer agent was successfully produced by grafting maleic anhydride (MA) to poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) chains on a reactive processing by mechanical mixing, using a mixture of PHBV, MA and dicumyl peroxide (DCP) as initiator. The resulting PHBV grafted MA (PHBV-g-MA) was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC), and its properties were compared to neat PHBV. FTIR showed an absorption band at 699 cm-1 for PHBV-g-MA, related to CH group of grafted anhydride ring. The initial thermal degradation temperature of the compatibilizer agent was reduced when compared to neat PHBV. DSC analysis showed that after grafting MA onto PHBV the crystallization temperature was about 20°C higher than neat PHBV, and the degree of crystallinity was increased. GPC analysis showed that MA when grafted onto PHBV led to a reduction of molecular weight and polydispersity.191229235CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFAPESP, São Paulo Research FoundationCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
Bacterial Remediation From Effluent Containing Multi-walled Carbon Nanotubes
Multi-wall carbon nanotubes (MWCNT) were functionalized with functional groups containing oxygen, mainly carboxylic groups (-COOH), through reaction with a mixture of H2SO4/HNO3 (3:1 v/v). The oxidized multi-wall carbon nanotubes (MWCNTOOH) were used to prepare an effluent, 2 mg L-1 in a saline solution of NaCl (0.9%), to study of remediation of MWCNTOOH in aqueous suspension by utilization of Escherichia coli. The suspensions of E. coli (4.5 × 105 CFU mL-1 and 4.5 × 108 CFU mL-1) in test tubes with MWCNTOOH effluent caused the precipitation of a large amount of MWCNTOOH and supernatant clearing. The scanning electron microscopy (SEM) analysis of the precipitate and supernatant showed the adhesion and interlace of MWCNTOOH in bacteria surface. Although the precipitate consist of a large quantity of MWCNTOOH and bacteria, it was verified their presence in the supernatant. The spread plate technique showed that MWCNTOOH caused no cellular death of E. coli in the supernatant.3041Baughman, R.H., Zakhidov, A.A., De Heer, W.A., Carbon nanotubes the route toward applications (2002) Science, 297, p. 787Kang, S., Pinault, M., Pfefferle, L.D., Elimelech, M., Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity (2007) Langmuir, 23, p. 8670Lam, C.W., James, J.T., McCluskey, R., Arepalli, S., Hunter, R.L., A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks (2006) Crit. Rev. Toxicol., 36, p. 189Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., Guo, X., Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene (2005) Environ. Sci. Technol., 39, p. 1378Moon, H.M., Kim, J.W., Carbon Nanotube Clusters as Universal Bacterial Adsorbents and Magnetic Separation Agents (2010) Biotechnol. Prog.r, 26, p. 179Gu, L., Elkin, T., Jiang, X., Li, H., Lin, Y., Qu, L., Tzeng, T.R.J., Sun, Y.P., Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens (2005) Chem. Commun., 7, p. 874Arias, L.R., Yang, L., Inactivation of Bacterial Pathogens by Carbon Nanotubes in Suspensions (2009) Langmuir, 25, pp. 3003-3012Akasaka, T., Watari, F., Capture of bacteria by flexible carbon nanotubes (2009) Acta Biomateralia, 5, p. 607Tan, H., Jiang, L.Y., Huang, Y., Liu, B., Hwang, K.C., The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials (2007) Compos. Sci. Tech., 67, p. 2941Kang, S., Herzberg, M., Rodrigues, D.F., Elimelech, M., Antibacterial Effects of Carbon Nanotubes: Size Does Matter! (2008) Langmuir, 24, p. 640
Processing And Characterization Of Composites Of Poly(3-hydroxybutyrate-co- Hydroxyvalerate) And Lignin From Sugar Cane Bagasse
A biodegradable polymer composite containing lignin from sugarcane bagasse and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was produced and characterized in terms of its thermal, morphological, and mechanical properties. For comparison with the properties of the composites, the properties of the isolated composite components (lignin and PHBV) were also determined. The characterizations were carried out by Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical properties. In the micrograph images, no physical contact between filler and matrix was verified. The thermal decomposition profiles of composites depend on the lignin/PHBV proportions, and their residual mass increased as a function of lignin amount. Higher temperatures were necessary to promote PHBV crystallization in the presence of lignin. However, the crystalline degree of composites was not affected by the lignin. The results obtained in the mechanical tests showed that the lignin addition caused a decrease of mechanical properties. © The 2011 Author(s).464417425Sahoo, S., Nakai, A., Nayak, S.K., Misra, M., Mohanty, A.K., Tripathy, S.S., Proceedings of the American Society for Composites, Technical Conference 23rdReddy, C.S.K., Ghai, R., Rashmi, Kalia, V.C., Polyhydroxyalkanoates: An overview (2003) Bioresource Technology, 87 (2), pp. 137-146. , DOI 10.1016/S0960-8524(02)00212-2, PII S0960852402002122Yang, K.K., Wang, X.L., Wang, Y.Z., Progress in nanocomposite of biodegradable polymer (2007) J Indust Eng Chem (Seoul, Republic of Korea), 13, pp. 485-500Liu, W., Misra, M., Askeland, P., Drzal, L.T., Mohanty, A.K., 'Green' composites from soy based plastic and pineapple leaf fiber: Fabrication and properties evaluation (2005) Polymer, 46 (8), pp. 2710-2721. , DOI 10.1016/j.polymer.2005.01.027Luo, S., Netravali, A.N., A study of physical and mechanical properties of poly(hydroxybutyrate-co- hydroxyvalerate) during composting (2003) Polym Degrad Stabil, 80, pp. 59-66Wu, C.S., Physical properties and biodegradability of maleated- polycaprolactone /starch composite (2003) Polym Degrad Stabil, 80, pp. 127-134Rohella, R.S., Sahoo, N., Paul, S.C., Choudhury, S., Chakravortty, V., Thermal studies on isolated and purified lignin (1996) Thermochimica Acta, 287 (1), pp. 131-138. , DOI 10.1016/0040-6031(96)02983-8, PII S0040603196029838Avella, M., Martuscelli, E., Orsello Raimo, M., Pascucci, B., Poly(3-hydroxybutyrate)/poly(methyleneoxid) composites: Thermal, crystallization and mechanical behavior (1997) Polymer, 38, pp. 6135-6143Chen, W., David, D.J., MacKnight, W.J., Karasz, F.E., Miscibility and morphology of composites of poly(3-hydroxybutyrate) and poly(vinyl butyral) (2001) Polymer, 42, pp. 8407-8414Guerrouani, N., Baldo, A., Maarouf, T., Belu, M.A., Kassis, C.M., Fluorinated-plasma coating on polyhydroxyalcanoate PHBV effect on biodegradation (2007) J Fluorine Chem, 128, pp. 925-930Shah, A.A., Hasan, F., Hameed, A., Ahmed, S., Isolation and characterization of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) degrading bacteria and purification of PHBV depolymerase from newly isolated Bacillus sp. AF3 (2007) International Biodeterioration and Biodegradation, 60 (2), pp. 109-115. , DOI 10.1016/j.ibiod.2007.01.004, PII S0964830507000169Dmb, F., Jam, A., De Faria, L.I.L., Biodegradable polymers: Overview and prospects (2007) Polimer Cienc e Tecnol (Brazil), 17, pp. 5-9Choi, J.S., Park, W.H., Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate) (2004) Polym Test, 23, pp. 455-460El-Hadi, A., Schnabel, R., Straube, E., Muller, G., Henning, S., Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends (2002) Polymer Testing, 21 (6), pp. 665-674. , DOI 10.1016/S0142-9418(01)00142-8, PII S0142941801001428Ferreira, B.M.P., Zavaglia, C.A.C., Duek, E.A.R., Films of PLLA/PHBV: Thermal, morphological, and mechanical characterization (2002) Journal of Applied Polymer Science, 86 (11), pp. 2898-2906. , DOI 10.1002/app.11334Fei, B., Chen, C., Wu, H., Peng, S., Wang, X., Dong, L., Xin, J.H., Modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using hydrogen bonding monomers (2004) Polymer, 45 (18), pp. 6275-6284. , DOI 10.1016/j.polymer.2004.07.008, PII S003238610400669XAvella, M., Errico, M.E., Rimedio, R., Sadocco, P., Preparation of biodegradable polyesters/high-amylose-starch composites by reactive blending and their characterization (2002) Journal of Applied Polymer Science, 83 (7), pp. 1432-1442. , DOI 10.1002/app.2304Han, C.C., Ismail, J., Kammer, H.W., Melt reaction in composites of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) and epoxidized natural rubber (2004) Polym Degrad Stabil, 85, pp. 947-955Teramoto, N., Urata, K., Ozawa, K., Shibata, M., Biodegradation of aliphatic polyester composites reinforced by abaca fiber (2004) Polym Degrad Stabil, 86, pp. 401-409Jiang, L., Huang, J., Qian, J., Chen, F., Zhang, J., Wolcott, M.P., Zhu, Y., Study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites: Effects of nucleation agent and compatibilizer (2008) Journal of Polymers and the Environment, 16 (2), pp. 83-93. , DOI 10.1007/s10924-008-0086-7Sanchez-Garcia, M.D., Gimenez, E., Lagaron, J.M., Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers (2008) Carbohydrate Polymers, 71 (2), pp. 235-244. , DOI 10.1016/j.carbpol.2007.05.041, PII S0144861707002986Hermida, E.B., Mega, V.I., Transcrystallization kinetics at the poly(3-hydroxybutyrate-co-3- hydroxyvalerate)/hemp fibre interface (2007) Composites Part A: Applied Science and Manufacturing, 38 (5), pp. 1387-1394. , DOI 10.1016/j.compositesa.2006.10.006, PII S1359835X0600282XLuo, S., Netravali, A.N., Characterization of henequen fibers and the henequen fiber/ poly(hydroxybutyrate-co-hydroxyvalerate) interface (2001) JAdhes Sci Technol, 15, pp. 423-437Buzarovska, A., Bogoeva-Gaceva, G., Grozdanov, A., Avella, M., Gentile, G., Errico, M., Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites (2007) Journal of Materials Science, 42 (16), pp. 6501-6509. , DOI 10.1007/s10853-007-1527-8Singh, S., Mohanty, A.K., Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation (2007) Composites Science and Technology, 67 (9), pp. 1753-1763. , DOI 10.1016/j.compscitech.2006.11.009, PII S0266353806004428Buzarovska, A., Bogoeva-Gaceva, G., Grozdanov, A., Avella, M., Gentile, G., Errico, M., Potential use of rice straw as filler in eco-composite materials (2008) Aust J Crop Sci, 1, pp. 37-42Ghosh, I., Jain, R.K., Glasser, W.G., Book of Abstracts, 215th ACS National Meeting, , Dallas: ;Hodzic, A., Coakley, R., Curro, R., Berndt, C.C., Shanks, R.A., Design and optimization of biopolyester bagasse fiber composites (2007) J Biobased Mater Bioener, 1, pp. 46-55Avella, M., Martuscelli, E., Raimo, M., Properties of composites and composites based on poly (3-hydroxy)butyrate (PHB) and poly (3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers (2000) J Mater Sci, 35, pp. 532-545Dufresne, A., Dupeyre, D., Paillet, M., Lignocellulosic flour-reinforced poly(hydrxoybutyrate-co-valerate) composites (2003) J Appl Polym Sci, 87, pp. 1302-1315Silva, F.T., Gjm, R., Rmb, M., (1999) Biomass for Energy and Industry, pp. 2999-21004. , Grassi G Gossi G dos Santos G, ed. London: Elsevier Applied Science;Cotrim, A.R., Ferraz, A., Goncalves, A.R., Silva, F.T., Bruns, R.E., Identifying the origin of lignins and monitoring their structural changes by means of FTIR-PCA and -SIMCA (1999) Bioresource Technology, 68 (1), pp. 29-34. , DOI 10.1016/S0960-8524(98)00082-0, PII S0960852498000820Lo, W.H., Yu, J., Effects of the energy dissipation rate and surface erosion on the biodegradation of poly(hydroxybutyrate-co-hydroxyvalerate) and its blends with synthetic polymers in an aquatic medium (2002) Journal of Applied Polymer Science, 83 (5), pp. 1036-1045. , DOI 10.1002/app.10031Liu, Q.-S., Zhu, M.-F., Wu, W.-H., Qin, Z.-Y., Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability (2009) Polym Degrad Stabil, 94, pp. 18-24Nguyen, S., Yu, G.-E., Marchessault, R.H., Thermal degradation of poly(3-hydroxyalkanoates): Preparation of well-defined oligomers (2002) Biomacromolecules, 3 (1), pp. 219-224. , DOI 10.1021/bm0156274Jakab, E., Faix, O., Till, F., Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry (1997) Journal of Analytical and Applied Pyrolysis, 40-41, pp. 171-186. , PII S0165237097000466French, R., Czernik, S., Catalytic pyrolysis of biomass for biofuels production (2010) Fuel Process Technol, 91, pp. 25-32Sharma, R.K., Wooten, J.B., Baliga, V.L., Lin, X., Chan, W.G., Hajaligol, M.R., Characterization of chars from pyrolysis of lignin (2004) Fuel, 83, pp. 1469-1482Pielichowski, K., Njuguna, J., (2005) Thermal Degradation of Polymeric Materials, pp. 138-140. , Shawbury, UK: Rapra Technology Limited;Nada, A.M.A., Abou Yousef, H., El-Gohary, S., Thermal degradation of hydrolyzed and oxidized lignins (2002) Journal of Thermal Analysis and Calorimetry, 68 (1), pp. 265-273. , DOI 10.1023/A:1014925803350Lemes, A.P., Soto-Oviedo, M.A., Waldman, W.R., Innocentini-Mei, L.H., Durán, N., Effect of Lignosulfonate on the thermal and morphological behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (2010) J Polym Environ, 18, pp. 250-259Mousavioun, P., Wos, D., George, G., Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends (2010) Indust Crops Prod, 32, pp. 656-66
Effect Of Mwcnt Functionalization On Thermal And Electrical Properties Of Phbv/mwcnt Nanocomposites
Pristine multiwalled carbon nanotubes (P-MWCNTs) were functionalized with carboxylic groups (MWCNT-COOH) through oxidation reactions and then reduced to produce hydroxyl groups (MWCNT-OH). Pristine and functionalized MWCNTs were used to produce poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites with 0.5 wt% of MWCNTs. MWCNT functionalization was verified by visual stability in water, infrared and Raman spectroscopy, and zeta potential measurements. Pristine and functionalized MWCNTs acted as the nucleating agent in a PHBV matrix, as verified by differential scanning calorimetry (DSC). However, the dispersion of filler into the matrix, thermal stability, and direct current (DC) conductivity were affected by MWCNT functionalization. Scanning electron microscopy (SEM) showed that filler dispersion into the PHBV matrix was improved with MWCNT functionalization. The surface roughness was reduced with the addition and functionalization of MWCNT. The thermal stability of PHBV/MWCNT-COOH, PHBV/P-MWCNT, and PHBV/MWCNT-OH nanocomposites were 20, 30, and 30 °C higher than neat PHBV, respectively, as verified by thermogravimetry analysis (TGA). Addition of pristine and functionalized MWCNTs provided electrical conductivity in nanocomposite, which was higher for PHBV/P-MWCNTs (1.2 × 10-5 S cm-1).760Xu, C., Qiu, Z., Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly (hydroxybutyrate)/multiwalled carbon nanotubes nanocomposites (2009) J. Polym. Sci., Part B: Polym. Phys, 47, p. 2238Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., Mohanty, A.K., Biobased plastics and bionanocomposites: Current status and future opportunities (2013) Prog. Polym. Sci, 38, p. 1653Reddy, C.S., Ghai, R., Kalia, V., Polyhydroxyalkanoates: An overview (2003) Bioresour. Technol, 87, p. 137Shang, L., Fei, Q., Zhang, Y.H., Wang, X.Z., Fan, D.-D., Chang, H.N., Thermal properties and biodegradability studies of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (2011) J. Polym. Environ, 20, p. 23Zribi-Maaloul, E., Trabelsi, I., Elleuch, L., Chouayekh, H., Salah, R.B., Purification and characterization of two polyhydroxyalcanoates from bacillus cereus (2013) Int. J. Biol. Macromol, 61, p. 82Fradinho, J.C., Domingos, J.M.B., Carvalho, G., Oehmen, A., Reis, M.A.M., Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae (2013) Bioresour. Technol, 132, p. 146Eggers, J., Steinbüchel, A., Poly(3-hydroxybutyrate) degradation in ralstonia eutropha h16 is mediated stereoselectively to (s)-3-hydroxybutyryl coenzyme a (coa) via crotonyl-coa (2013) J. Bacteriol, 195, p. 3213Boyandin, A.N., Rudnev, V.P., Ivonin, V.N., Prudnikova, S.V., Korobikhina, K.I., Filipenko, M.L., Volova, T.G., Sinskey, A.J., Biodegradation of polyhydroxyalkanoate films in natural environments (2012) Macromol. Symp, 320, p. 38Srubar, W.V., Pilla, S., Wright, Z.C., Ryan, C.A., Greene, J.P., Frank, C.W., Billington, S.L., Mechanisms and impact of fiber- matrix compatibilization techniques on the material characterization of phbv/oak wood flour engineered biobased composites (2012) Compos. Sci. Technol, 72, p. 708Liu, W.J., Yang, H.L., Wang, Z., Dong, L.S., Liu, J.J., Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) (2002) J. Appl. Polym. Sci, 86, p. 2145Avella, M., Bogoeva-Gaceva, G., Buz, A., Errico, M.E., Gentile, G., Grozdanov, A., Biocomposites reinforced with kenaf fibers (2007) J. Appl. Polym. Sci, 104, p. 3192El-Hadi, A., Schnabel, R., Straube, E., Müller, G., Henning, S., Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) phas and their blends (2002) Polym. Test, 21, p. 665Ajayan, P.M., Nanotubes from carbon (1999) Chem. Rev, 99, p. 1787Atieh, M.A., Bakather, O.Y., Al-Tawbini, B., Bukhari, A.A., Abuilaiwi, F.A., Fettouhi, M.B., Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water (2010) Bioinorg. Chem. Appl, 2010, p. 1Sahoo, N.G., Rana, S., Cho, J.W., Li, L., Chan, S.H., Polymer nanocomposites based on functionalized carbon nanotubes (2010) Prog. Polym. Sci, 35, p. 837Moniruzzaman, M., Winey, K.I., Polymer nanocomposites containing carbon nanotubes (2006) Macromolecules, 39, p. 5194Hu, H., Yu, A., Kim, E., Zhao, B., Itkis, M.E., Bekyarova, E., Haddon, R.C., Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes (2005) J. Phys. Chem. B, 109Vidhate, S., Innocentini-Mei, L., Souza, N.A.D., Mechanical and electrical multifunctional poly (3-hydroxybutyrate- co -3-hydroxyvalerate )- multiwall carbon nanotube nanocomposites (2012) Polym. Eng. Sci, 52, p. 1367Liu, C.-X., Choi, J.-W., Improved dispersion of carbon nanotubes in polymers at high concentrations (2012) Nanomaterials, 2, p. 329Ma, P.C., Kim, J.-K., Tang, B.Z., Functionalization of carbon nanotubes using a silane coupling agent (2006) Carbon, 44, p. 3232Chen, S., Shen, W., Wu, G., Chen, D., Jiang, M., A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups (2005) Chem. Phys. Lett, 402, p. 312Stobinski, L., Lesiak, B., Kövér, L., Tóth, J., Biniak, S., Trykowski, G., Judek, J., Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the ftir and electron spectroscopy methods (2010) J. Alloys Compd, 501, p. 77Scheibe, B., Borowiak-Palen, E., Kalenczuk, R.J., Oxidation and reduction of multiwalled carbon nanotubes - Preparation and characterization (2010) Mater. Charact, 61, p. 185Liu, L., Qin, Y., Guo, Z., Zhu, D., Reduction of solubilized multi-walled carbon nanotubes (2003) Carbon, 41, p. 331Damian, C., Andreea, M., Iovu, H., Ethylenediamine functionalization effect on the thermo-mechanical properties of epoxy nanocomposites reinforced with multiwall carbon nanotubes (2010) U.P. B. Sci. Bull, 72, p. 163Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Veríssimo, C., Comparative study of first- and second-order raman spectra of mwcnt at visible and infrared laser excitation (2006) Carbon, 44, p. 2202Osswald, S., Havel, M., Gogotsi, Y., Monitoring oxidation of multiwalled carbon nanotubes by raman spectroscopy (2007) J. Raman Spectrosc, 38, p. 728Byrne, M.T., McNamee, W.P., Gun'Ko, Y.K., Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites (2008) Nanotechnology, 19, p. 1Gunaratne, L.M.W.K., Shanks, R.A., Amarasinghe, G., Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate) (2004) Thermochim. Acta, 423, p. 127Owen, A.J., Heinzel, J., Škrbić, Z., Divjaković, V., Crystallization and melting behaviour of phb and phb/hv copolymer (1992) Polymer, 33, p. 1563Lai, M., Li, J., Yang, J., Liu, J., Tong, X., Cheng, H., The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite (2004) Polym. Int, 53, p. 1479Yu, H.-Y., Yao, J.-M., Qin, Z.-Y., Liu, L., Yang, X.-G., Comparison of covalent and noncovalent interactions of carbon nanotubes on the crystallization behavior and thermal properties of poly(3-hydroxybutyrate- co -3-hydroxyvalerate) (2013) J. Appl. Polym. Sci, 130, p. 4299Shaffer, M.S.P., Windle, A.H., Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites (1999) Adv. Mater, 11, p. 937Li, Q., Temperature dependence of the electrical properties of the carbon nanotube/polymer composites (2009) EXPRESS Polym. Lett, 3, p. 769Aguilar, J.O., Bautista-Quijano, J.R., Avilés, F., Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films (2010) EXPRESS Polym. Lett, 4, p. 29
Kinetoplastid membrane protein-11 is present in promastigotes and amastigotes of Leishmania amazonensis and its surface expression increases during metacyclogenesis
Kinetoplastid membrane protein-11 (KMP-11), a protein present in all
kinetoplastid protozoa, is considered a potential candidate for a
leishmaniasis vaccine. A suitable leishmaniasis vaccine candidate
molecule must be expressed in amastigotes, the infective stage for
mammals. However, the expression of KMP-11 in Leishmania amastigotes
has been a subject of controversy. We evaluated the expression of this
molecule in logarithmic and stationary growth phase promastigotes, as
well as in amastigotes, of Leishmania amazonensis by immunoblotting,
flow cytometry and immunocytochemistry, using a monoclonal antibody
against KMP-11. We found that KMP-11 is present in promastigotes and
amastigotes. In both stages, the protein was found in association with
membrane structures (at the cell surface, flagellar pocket and
intracellular vesicles). More importantly, its surface expression is
higher in amastigotes than in promastigotes and increases during
metacyclogenesis. The increased expression of KMP-11 in metacyclic
promastigotes, and especially in amastigotes, indicates a role for this
molecule in the parasite relationship with the mammalian host. The
presence of this molecule in amastigotes is consistent with the
previously demonstrated immunoprotective capacity of vaccine prototypes
based on the KMP-11-coding gene and the presence of humoral and
cellular immune responses to KMP-11 in Leishmania-infected humans and
animals
Effects of maternal artificial vocalization on hyperprolific lactating sows and piglets behavior
Abstract The objective of this trial was to evaluate the behavioral patterns and performance of lactating sows and their litters under the effect of artificial vocalization. Twenty-eight sows and their litters were distributed in a completely randomized design in a 2x2 factorial scheme (artificial vocalization x lactation week). The behavior of the animals was monitored during 24 hours on the 7th and 15th days of lactation, analyzing the number, interval, and frequency of nursings. The body condition and performance of the sows were also evaluated. Artificial vocalization promoted higher frequencies of eating for sow and nursing for piglets (P 0.05). The use of maternal artificial vocalization during lactation of sows promoted greater lactation efficiency and longer rest time, favoring the sows’ welfare