20 research outputs found

    RoboTSP - A Fast Solution to the Robotic Task Sequencing Problem

    Full text link
    In many industrial robotics applications, such as spot-welding, spray-painting or drilling, the robot is required to visit successively multiple targets. The robot travel time among the targets is a significant component of the overall execution time. This travel time is in turn greatly affected by the order of visit of the targets, and by the robot configurations used to reach each target. Therefore, it is crucial to optimize these two elements, a problem known in the literature as the Robotic Task Sequencing Problem (RTSP). Our contribution in this paper is two-fold. First, we propose a fast, near-optimal, algorithm to solve RTSP. The key to our approach is to exploit the classical distinction between task space and configuration space, which, surprisingly, has been so far overlooked in the RTSP literature. Second, we provide an open-source implementation of the above algorithm, which has been carefully benchmarked to yield an efficient, ready-to-use, software solution. We discuss the relationship between RTSP and other Traveling Salesman Problem (TSP) variants, such as the Generalized Traveling Salesman Problem (GTSP), and show experimentally that our method finds motion sequences of the same quality but using several orders of magnitude less computation time than existing approaches.Comment: 6 pages, 7 figures, 1 tabl

    Demonstration-guided Optimal Control for Long-term Non-prehensile Planar Manipulation

    Full text link
    Long-term non-prehensile planar manipulation is a challenging task for robot planning and feedback control. It is characterized by underactuation, hybrid control, and contact uncertainty. One main difficulty is to determine contact points and directions, which involves joint logic and geometrical reasoning in the modes of the dynamics model. To tackle this issue, we propose a demonstration-guided hierarchical optimization framework to achieve offline task and motion planning (TAMP). Our work extends the formulation of the dynamics model of the pusher-slider system to include separation mode with face switching cases, and solves a warm-started TAMP problem by exploiting human demonstrations. We show that our approach can cope well with the local minima problems currently present in the state-of-the-art solvers and determine a valid solution to the task. We validate our results in simulation and demonstrate its applicability on a pusher-slider system with real Franka Emika robot in the presence of external disturbances

    Learning Constrained Distributions of Robot Configurations with Generative Adversarial Network

    Full text link
    In high dimensional robotic system, the manifold of the valid configuration space often has a complex shape, especially under constraints such as end-effector orientation or static stability. We propose a generative adversarial network approach to learn the distribution of valid robot configurations under such constraints. It can generate configurations that are close to the constraint manifold. We present two applications of this method. First, by learning the conditional distribution with respect to the desired end-effector position, we can do fast inverse kinematics even for very high degrees of freedom (DoF) systems. Then, we use it to generate samples in sampling-based constrained motion planning algorithms to reduce the necessary projection steps, speeding up the computation. We validate the approach in simulation using the 7-DoF Panda manipulator and the 28-DoF humanoid robot Talos

    Learning How to Walk: Warm-starting Optimal Control Solver with Memory of Motion

    Get PDF
    In this paper, we propose a framework to build a memory of motion for warm-starting an optimal control solver for the locomotion task of a humanoid robot. We use HPP Loco3D, a versatile locomotion planner, to generate offline a set of dynamically consistent whole-body trajectory to be stored as the memory of motion. The learning problem is formulated as a regression problem to predict a single-step motion given the desired contact locations, which is used as a building block for producing multi-step motions. The predicted motion is then used as a warm-start for the fast optimal control solver Crocoddyl. We have shown that the approach manages to reduce the required number of iterations to reach the convergence from ~9.5 to only ~3.0 iterations for the single-step motion and from ~6.2 to ~4.5 iterations for the multi-step motion, while maintaining the solution's quality

    Learning to Guide Online Multi-Contact Receding Horizon Planning

    Get PDF

    Enhanced microscale heat transfer phenomena in macro geometry

    No full text
    Microchannel heat transfer receives huge interest due to its wide range of applications, since it was first introduced by Tuckerman and Pease [1] in 1981. The high heat removal capability of microchannel heat sink meets the demand of high heat dissipation from various applications, especially in the microprocessor industry. However, there is little agreement between researchers as to whether conventional theories can be applied to predict fluid flow and heat transfer phenomena in microchannel. Some researchers have reported general agreement, while others have reported discrepancies from the conventional theories. Additionally, most microchannels’ fabrications require advanced manufacturing technologies, which impose constraints on the development of microchannel heat sink. Hence, the aim of this final year project is to analyse microchannel heat transfer in macro geometry which can be manufactured through conventional manufacturing method.Bachelor of Engineering (Mechanical Engineering

    A memory of motion for visual predictive control tasks

    No full text
    This paper addresses the problem of efficiently achieving visual predictive control tasks. To this end, a memory of motion, containing a set of trajectories built off-line, is used for leveraging precomputation and dealing with difficult visual tasks. Standard regression techniques, such as k-nearest neighbors and Gaussian process regression, are used to query the memory and provide on-line a warm-start and a way point to the control optimization process. The proposed technique allows the control scheme to achieve high performance %difficult tasks and, at the same time, keep the computational time limited. Simulation and experimental results, carried out with a 7-axis manipulator, show the effectiveness of the approach

    Memory of Motion for Warm-Starting Trajectory Optimization

    No full text
    Trajectory optimization for motion planning requires good initial guesses to obtain good performance. In our proposed approach, we build a memory of motion based on a database of robot paths to provide good initial guesses. The memory of motion relies on function approximators and dimensionality reduction techniques to learn the mapping between the tasks and the robot paths. Three function approximators are compared: k-Nearest Neighbor, Gaussian Process Regression, and Bayesian Gaussian Mixture Regression. In addition, we show that the memory can be used as a metric to choose between several possible goals, and using an ensemble method to combine different function approximators results in a significantly improved warm-starting performance. We demonstrate the proposed approach with motion planning examples on the dual-arm robot PR2 and the humanoid robot Atlas
    corecore