186 research outputs found

    The Effect of Dietary Intervention on Irritable Bowel Syndrome: A Systematic Review

    Get PDF
    OBJECTIVES: Elimination diets have been used for many years to treat irritable bowel syndrome (IBS). These approaches had fallen out of favor until a recent resurgence, which was based on new randomized controlled trial (RCT) data that suggested it might be effective. The evidence for the efficacy of dietary therapies has not been evaluated systematically. We have therefore conducted a systematic review to examine this issue. METHODS: MEDLINE, EMBASE, and the Cochrane Controlled Trials Register were searched up to December 2013. Trials recruiting adults with IBS, which compared any form of dietary restriction or addition of an offending food group in patients already on a restricted diet vs. placebo, control therapy, or “usual management”, were eligible. Dichotomous symptom data were pooled to obtain a relative risk of remaining symptomatic after therapy as well as the number needed to treat with a 95% confidence interval. RESULTS: We identified 17 RCTs involving 1,568 IBS patients that assessed elimination diets. Only three RCTs involving 230 patients met our eligibility criteria, all of which evaluated different approaches, and thus a meta-analysis could not be conducted. CONCLUSIONS: More evidence is needed before generally recommending elimination diets for IBS patients

    POZ-, AT-hook-, and Zinc Finger-containing Protein (PATZ) Interacts with Human Oncogene B Cell Lymphoma 6 (BCL6) and Is Required for Its Negative Autoregulation.

    Get PDF
    The PATZ1 gene encoding a POZ/AT-hook/Kruppel zinc finger (PATZ) transcription factor, is considered a cancer-related gene because of its loss or misexpression in human neoplasias. As for other POZ/domain and Kruppel zinc finger (POK) family members, the transcriptional activity of PATZ is due to the POZ-mediated oligomer formation, suggesting that it might be not a typical transactivator but an architectural transcription factor, thus functioning either as activator or as repressor depending on the presence of proteins able to interact with it. Therefore, to better elucidate PATZ function, we searched for its molecular partners. By yeast two-hybrid screenings, we found a specific interaction between PATZ and BCL6, a human oncogene that plays a key role in germinal center (GC) derived neoplasias. We demonstrate that PATZ and BCL6 interact in germinal center-derived B lymphoma cells, through the POZ domain of PATZ. Moreover, we show that PATZ is able to bind the BCL6 regulatory region, where BCL6 itself acts as a negative regulator, and to contribute to negatively modulate its activity. Consistently, disruption of one or both Patz1 alleles in mice causes focal expansion of thymus B cells, in which BCL6 is up-regulated. This phenotype was almost completely rescued by crossing Patz1(+/-) with Bcl6(+/-) mice, indicating a key role for Bcl6 expression in its development. Finally, a significant number of Patz1 knock-out mice (both heterozygous and homozygous) also develop BCL6-expressing lymphomas. Therefore, the disruption of one or both Patz1 alleles may favor lymphomagenesis by activating the BCL6 pathway

    Evolutionary History of Rabies in Ghana

    Get PDF
    Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    High Frequency of Chronic Bacterial and Non-Inflammatory Prostatitis in Infertile Patients with Prostatitis Syndrome Plus Irritable Bowel Syndrome

    Get PDF
    Although prostatitis syndrome (PS) and irritable bowel syndrome (IBS) are common disorders, information on the prevalence of IBS in infertile patients with PS is relatively scanty. Therefore, this study was undertaken to estimate the frequency of PS and IBS and to evaluate the prevalence of the various diagnostic categories of prostatitis.This study enrolled 152 patients with PS, diagnosed by the NIH-Chronic Prostatitis Symptom Index (NIH-CPSI) in an andrological setting, and 204 patients with IBS, diagnosed according to the Rome III diagnostic criteria in a gastroenterological setting. The patients with PS were asked to fulfill the Rome III questionnaire for IBS, whereas patients with IBS were asked to complete the NIH-CPSI. The simultaneous presence of PS and IBS was observed in 30.2% and 31.8% of the patients screened by andrologists and gastroenterologists, respectively. Altogether, 111 patients had PS plus IBS (31.2%). They had a total NIH-CPSI and pain subscale scores significantly higher than patients with PS alone. Gastrointestinal symptoms in patients with PS plus IBS were similar to those reported by patients with IBS alone and significantly greater in patients with PS alone. Patients with PS plus IBS had a significantly higher frequency of chronic bacterial prostatitis (category II) and lower of non-inflammatory prostatitis (category IIIB), compared to patients with PS alone. The frequency of inflammatory prostatitis (category IIIA) resulted similar.Prostatitis syndromes and IBS are frequently associated in patients with PS- or IBS-related symptoms. These patients have an increased prevalence of chronic bacterial and non-inflammatory prostatitis

    Fluorescent Fusion Proteins of Soluble Guanylyl Cyclase Indicate Proximity of the Heme Nitric Oxide Domain and Catalytic Domain

    Get PDF
    BACKGROUND: To examine the structural organisation of heterodimeric soluble guanylyl cyclase (sGC) Förster resonance energy transfer (FRET) was measured between fluorescent proteins fused to the amino- and carboxy-terminal ends of the sGC beta1 and alpha subunits. METHODOLOGY/PRINCIPAL FINDINGS: Cyan fluorescent protein (CFP) was used as FRET donor and yellow fluorescent protein (YFP) as FRET acceptor. After generation of recombinant baculovirus, fluorescent-tagged sGC subunits were co-expressed in Sf9 cells. Fluorescent variants of sGC were analyzed in vitro in cytosolic fractions by sensitized emission FRET. Co-expression of the amino-terminally tagged alpha subunits with the carboxy-terminally tagged beta1 subunit resulted in an enzyme complex that showed a FRET efficiency of 10% similar to fluorescent proteins separated by a helix of only 48 amino acids. Because these findings indicated that the amino-terminus of the alpha subunits is close to the carboxy-terminus of the beta1 subunit we constructed fusion proteins where both subunits are connected by a fluorescent protein. The resulting constructs were not only fluorescent, they also showed preserved enzyme activity and regulation by NO. CONCLUSIONS/SIGNIFICANCE: Based on the ability of an amino-terminal fragment of the beta1 subunit to inhibit activity of an heterodimer consisting only of the catalytic domains (alphacatbetacat), Winger and Marletta (Biochemistry 2005, 44:4083-90) have proposed a direct interaction of the amino-terminal region of beta1 with the catalytic domains. In support of such a concept of "trans" regulation of sGC activity by the H-NOX domains our results indicate that the domains within sGC are organized in a way that allows for direct interaction of the amino-terminal regulatory domains with the carboxy-terminal catalytic region. In addition, we constructed "fluorescent-conjoined" sGC's by fusion of the alpha amino-terminus to the beta1 carboxy-terminus leading to a monomeric, fluorescent and functional enzyme complex. To our knowledge this represents the first example where a fluorescent protein links two different subunits of a higher ordered complex to yield a stoichometrically fixed functionally active monomer

    Viral Mediated Redirection of NEMO/IKKγ to Autophagosomes Curtails the Inflammatory Cascade

    Get PDF
    The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-κB is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-κB (IκB) proteins and the IκB kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-κB activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-κB essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response
    corecore