62 research outputs found

    Optical Surface Vortices and Their Use in Nanoscale Manipulation

    Get PDF
    Following a brief overview of the physics underlying the interaction of twisted light with atoms at near-resonance frequencies, the essential ingredients of the interaction of atoms with surface optical vortices are described. It is shown that surface optical vortices can offer an unprecedented potential for the nanoscale manipulation of absorbed atoms congregating at regions of extremum light intensity on the surface

    Optical Dipole Trapping beyond Rotating Wave Approximation: The case of Large Detuning

    Full text link
    We show that the inclusion of counter-rotating terms, usually dropped in evaluations of interaction of an electric dipole of a two level atom with the electromagnetic field, leads to significant modifications of trapping potential in the case of large detuning. The results are shown to be in excellent numerical agreement with recent experimental findings, for the case of modes of Laguerre-Gauss spatial profile.Comment: 13 pages, 2 figure

    Surface optical vortices

    Get PDF
    It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners

    Graphene-like optical light field and its interaction with two-level atoms

    Get PDF
    The theoretical basis leading to the creation of a light field with a hexagonal honeycomb structure resembling graphene is considered along with its experimental realization and its interaction with atoms. It is argued that associated with such a light field is an optical dipole potential which leads to the diffraction of the atoms, but the details depend on whether the transverse spread of the atomic wave packet is larger than the transverse dimensions of the optical lattice (resonant Kapitza-Dirac effect) or smaller (optical Stern-Gerlach effect). Another effect in this context involves the creation of gauge fields due to the Berry phase acquired by the atom moving in the light field. The experimental realization of the light field with a honeycomb hexagonal structure is described using holographic methods and we proceed to explore the atom diffraction in the Kapitza-Dirac regime as well as the optical Stern-Gerlach regime, leading to momentum distributions with characteristic but different hexagonal structures. The artificial gauge fields too are shown to have the same hexagonal spatial structure and their magnitude can be significantly large. The effects are discussed with reference to typical parameters for the atoms and the fields

    Ultracold atoms in radio-frequency-dressed potentials beyond the rotating wave approximation

    Full text link
    We study dressed Bose-Einstein condensates in an atom chip radio-frequency trap. We show that in this system sufficiently strong dressing can be achieved to cause the widely used rotating wave approximation (RWA) to break down. We present a full calculation of the atom - field coupling which shows that the non-RWA contributions quantitatively alter the shape of the emerging dressed adiabatic potentials. The non-RWA contributions furthermore lead to additional allowed transitions between dressed levels. We use RF spectroscopy of Bose-Einstein condensates trapped in the dressed state potentials to directly observe the transition from the RWA to the beyond-RWA regime.Comment: 6 pages, 4 figure

    Reply to Comment by K. Forbes on "The super-chirality of vector twisted light" by M. Babiker, J. Yuan, K. Koksal and V. E. Lembessis; Optics Communications 554, 130185 (2024)

    Full text link
    We respond to the recent comment in Optics Communications by Kayn Forbes on our recent Optics Communications article and we maintain that, contrary to what Forbes claims, substantial superchirality exists as a property of the m1m\geq 1 higher order Poincare modes. Forbes arguments are based on misconceptions and analytical errors, leading to erroneous results and unjustified criticism.Comment: Reply to arXiv:2403.13495, which is itself a comment on arXiv:2301.0520

    Quantized Roentgen Effect in Bose-Einstein Condensates

    Full text link
    A classical dielectric moving in a charged capacitor can create a magnetic field (Roentgen effect). A quantum dielectric, however, will not produce a magnetization, except at vortices. The magnetic field outside the quantum dielectric appears as the field of quantized monopoles

    The zero helicity and chirality of optical vortices

    Get PDF
    We show that any uniformly linearly-polarised paraxial vortex mode carrying orbital angular momentum (OAM) has zero spin angular momentum (SAM) density, but exhibits non-zero helicity density distributions. Such a mode then possesses chirality as confirmed by experiment and so can engage with chiral matter. We show that confining the treatment for the general paraxial fields only to leading order leads directly to agreement of our theory with the experimental results, provided we ensure that crucially the paraxial fields obey duality. We find that the space integral of the helicity and chirality densities vanish identically for all such optical vortex modes without specifying the kind of mode. These generally applicable properties of optical vortex modes carrying orbital angular momentum thus assert that without optical spin due to elliptical wave polarisation of index σ, an optical vortex alone cannot possess total helicity, even though it always exhibits non-zero helicity density distributions
    corecore