187 research outputs found
Recommended from our members
A finite element study of fatigue crack propagation in single lap bonded joint with process-induced disbond
This paper presents a method for predicting fatigue crack propagation in adhesive bonded composite joints with an initial full-width disbond using finite element analysis and numerical integration of the material's fatigue crack growth rate law. Fatigue tests were conducted on single lap joints. Crack lengths were monitored from four runout corners. In-situ crack growth measurements were performed by ink injection to identify the crack front profile during fatigue loading. The crack growth was modelled using a fracture mechanics criterion considering two different crack propagation patterns. The material's fatigue crack growth rate law was determined experimentally using the standard double cantilever beam and end notch flexure specimens. Using the total strain energy release rate and the two crack scenarios, the numerical model predicted the lower and upper bounds of the measured fatigue crack growth rates of the lap joint
Kinematical analysis of the nutation speed reducer
This paper discusses the development of a Nutating Speed Reducer (NSR) which is characterized by high reduction ratio, high tooth contact ratio, very high torque to weight/volume ratio, quiet and smooth operation under load and very high efficiency. All of these advantages are due to the presence of conjugate face-gear pairs, which incorporate each other, which called nutating/rotating gear mechanism. Details of the NSR, its kinematics, gear tooth load capacity, and mesh efficiency are explained. The NSR component speeds and speed reduction ratios of the NSR are calculated. Effect of the varying nutation angles on the geometry of the NSR is discussed and compared
Recommended from our members
Experimental and numerical study of process-induced defects and their effect on fatigue debonding in composite joints
Laboratory coupon joints for fatigue debonding tests usually have narrow width and a through-width initial disbond. However, realistic structural joints are much wider and may contain process-induced defects and accidental damage; both are much smaller than the joint width. Small and discrete damage may behave differently from the idealised through-width disbond crack. This has brought a question on whether the laboratory coupon joint can accurately represent the fatigue behaviour of wider structural joints. This paper presents an experimental and numerical study of fatigue behaviour of a wide bonded lap joint with a process-induced defect of semi-circular shape. Fatigue debonding propagation was monitored by ultrasound inspection. Fatigue life was predicted using a normalised strain energy release rate parameter calculated by finite element method, and the adhesive material fatigue crack growth rate data measured under single and mixed mode conditions. Simulation of process-induced defect and validation by experiments have brought a better understanding of fatigue debonding behaviour in wide joints containing realistic damage. Suggestions are given for fatigue fracture tests of bonded joints
Phase transitions in the spinless Falicov-Kimball model with correlated hopping
The canonical Monte-Carlo is used to study the phase transitions from the
low-temperature ordered phase to the high-temperature disordered phase in the
two-dimensional Falicov-Kimball model with correlated hopping. As the
low-temperature ordered phase we consider the chessboard phase, the axial
striped phase and the segregated phase. It is shown that all three phases
persist also at finite temperatures (up to the critical temperature )
and that the phase transition at the critical point is of the first order for
the chessboard and axial striped phase and of the second order for the
segregated phase. In addition, it is found that the critical temperature is
reduced with the increasing amplitude of correlated hopping in the
chessboard phase and it is strongly enhanced by in the axial striped and
segregated phase.Comment: 17 pages, 6 figure
Thermodynamic studies of the two dimensional Falicov-Kimball model on a triangular lattice
Thermodynamic properties of the spinless Falicov-Kimball model are studied on
a triangular lattice using numerical diagonalization technique with Monte-Carlo
simulation algorithm. Discontinuous metal-insulator transition is observed at
finite temperature. Unlike the case of square lattice, here we observe that the
finite temperature effect is not able to smear out the discontinuous
metal-insulator transition seen in the ground state. Calculation of specific
heat (C_v) shows single and double peak structures for different values of
parameters like on-site correlation strength (U), f-electron energy (E_f) and
temperature.Comment: 6 pages, 7 figure
Stripes and holes in a two-dimensional model of spinless fermions and hardcore bosons
We consider a Hubbard-like model of strongly-interacting spinless fermions
and hardcore bosons on a square lattice, such that nearest neighbor occupation
is forbidden. Stripes (lines of holes across the lattice forming antiphase
walls between ordered domains) are a favorable way to dope this system below
half-filling. The problem of a single stripe can be mapped to a spin-1/2 chain,
which allows understanding of its elementary excitations and calculation of the
stripe's effective mass for transverse vibrations. Using Lanczos exact
diagonalization, we investigate the excitation gap and dispersion of a hole on
a stripe, and the interaction of two holes. We also study the interaction of
two, three, and four stripes, finding that they repel, and the interaction
energy decays with stripe separation as if they are hardcore particles moving
in one (transverse) direction. To determine the stability of an array of
stripes against phase separation into particle-rich phase and hole-rich liquid,
we evaluate the liquid's equation of state, finding the stripe-array is not
stable for bosons but is possibly stable for fermions.Comment: 24 pages, 18 figure
Gated communities: Definitions, causes and consequences
Gated communities became an 'object of study' in the 1990s as social scientists observed their growth in several cities; they are now a feature of the urban landscape in most cities around the world. The expansion of gated communities has led to prolific research, examining different aspects of this type of residential development and providing evidence from case studies worldwide. This paper reviews how gated communities are conceptualised according to the literature and identifies the main factors influencing their development. It also considers spatial, economic, political and social consequences of the development of gated communities. These elements should be taken into account by planners and policymakers to minimise their negative impacts and maximise the positive consequences of a residential option that is likely to be part of the urban landscape for a long time
- …