8,086 research outputs found

    Dark Energy and the Return of the Phoenix Universe

    Full text link
    In cyclic universe models based on a single scalar field (e.g., the radion determining the distance between branes in M-theory), virtually the entire universe makes it through the ekpyrotic smoothing and flattening phase, bounces, and enters a new epoch of expansion and cooling. This stable evolution cannot occur, however, if scale-invariant curvature perturbations are produced by the entropic mechanism because it requires two scalar fields (e.g., the radion and the Calabi-Yau dilaton) evolving along an unstable classical trajectory. In fact, we show here that an overwhelming fraction of the universe fails to make it through the ekpyrotic phase; nevertheless, a sufficient volume survives and cycling continues forever provided the dark energy phase of the cycle lasts long enough, of order a trillion years. Two consequences are a new role for dark energy and a global structure of the universe radically different from that of eternal inflation.Comment: 5 pages, 3 figure

    The spherical symmetry Black hole collapse in expanding universe

    Full text link
    The spherical symmetry Black holes are considered in expanding background. The singularity line and the marginally trapped tube surface behavior are discussed. In particular, we address the conditions whether dynamical horizon forms for these cosmological black holes. We also discuss about the cosmological constant effect on these black hole and the redshift of the light which comes from the marginally trapped tube surface.Comment: 7 pages, 3 figures. Accepted for publication in International Journal of Modern Physics D (IJMPD). arXiv admin note: text overlap with arXiv:gr-qc/0308033 and arXiv:gr-qc/030611

    Dark Matter Prediction from Canonical Quantum Gravity with Frame Fixing

    Full text link
    We show how, in canonical quantum cosmology, the frame fixing induces a new energy density contribution having features compatible with the (actual) cold dark matter component of the Universe. First we quantize the closed Friedmann-Robertson-Walker (FRW) model in a sinchronous reference and determine the spectrum of the super-Hamiltonian in the presence of ultra-relativistic matter and a perfect gas contribution. Then we include in this model small inhomogeneous (spherical) perturbations in the spirit of the Lemaitre-Tolman cosmology. The main issue of our analysis consists in outlining that, in the classical limit, the non-zero eigenvalue of the super-Hamiltonian can make account for the present value of the dark matter critical parameter. Furthermore we obtain a direct correlation between the inhomogeneities in our dark matter candidate and those one appearing in the ultra-relativistic matter.Comment: 5 pages, to appear on Modern Physics Letters

    Statistical mechanics of damage phenomena

    Full text link
    This paper applies the formalism of classical, Gibbs-Boltzmann statistical mechanics to the phenomenon of non-thermal damage. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. Stochastic topological behavior in the system is described in terms of an effective temperature parameter thermalizing the system. An equation of state and a topological analog of the energy-balance equation are obtained. The formalism of the free energy potential is developed, and the nature of the first order phase transition and spinodal is demonstrated.Comment: Critical point appeared to be a spinodal poin

    Big Bang Nucleosynthesis Constraints on the Self-Gravity of Pressure

    Get PDF
    Using big bang nucleosynthesis and present, high-precision measurements of light element abundances, we constrain the self-gravity of radiation pressure in the early universe. The self-gravity of pressure is strictly non-Newtonian, and thus the constraints we set provide a direct test of this prediction of general relativity and of the standard, Robertson-Walker-Friedmann cosmology.Comment: 5 pages, 1 figure. This paper was developed from an earlier version which was posted as arXiv:0707.358

    Interpretations of the Accelerating Universe

    Full text link
    It is generally argued that the present cosmological observations support the accelerating models of the universe, as driven by the cosmological constant or `dark energy'. We argue here that an alternative model of the universe is possible which explains the current observations of the universe. We demonstrate this with a reinterpretation of the magnitude-redshift relation for Type Ia supernovae, since this was the test that gave a spurt to the current trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a paragraph on the interpretation of the CMB anisotropy in the QSSC added in conclusion, general results unchanged. To appear in the October 2002 issue of the "Publications of the Astronmical Society of the Pacific

    Inhomogeneous Dust Collapse in 5D Einstein-Gauss-Bonnet Gravity

    Full text link
    We consider a Lemaitre - Tolman - Bondi type space-time in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms, and present exact solution in closed form. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms alpha > 0 completely changes the causal structure of the singularities from the analogous general relativistic case. The gravitational collapse of inhomogeneous dust in the five-dimensional Gauss-Bonnet extended Einstein equations leads to formation of a massive, but weak, timelike singularity which is forbidden in general relativity. Interestingly, this is a counterexample to three conjecture viz. cosmic censorship conjecture, hoop conjecture and Seifert's conjecture.Comment: 8 Latex Pages, 2 EPS figure

    Longitudinal spin transport in diluted magnetic semiconductor superlattices: the effect of the giant Zeeman splitting

    Full text link
    Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic field region the giant Zeeman splitting plays a dominant role which leads to a large negative magnetoconductivity. In the strong magnetic field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s−ds-d exchange interaction between the electron in the conduction band and the magnetic ions.Comment: 6 pages, 9 figures, submitted to Phys. Rev.

    Applicability and non-applicability of equilibrium statistical mechanics to non-thermal damage phenomena: II. Spinodal behavior

    Full text link
    This paper investigates the spinodal behavior of non-thermal damage phenomena. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. In the vicinity of the spinodal point the power-law scaling behavior is found. For the meanfield fiber-bundle model the spinodal exponents are found to have typical meanfield values.Comment: Version related: More careful explanation for the critical slowing-down. General: The topological properties of non-thermal damage are described by the formalism of statistical mechanics. This is the continuation of arXiv:0805.0346. Comments, especially negative, are very welcom
    • …
    corecore