10 research outputs found

    Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments.

    Get PDF
    Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances

    Helical structure and stability in human apolipoprotein A-I by hydrogen exchange and mass spectrometry

    No full text
    Apolipoprotein A-I (apoA-I) stabilizes anti-atherogenic high density lipoprotein particles (HDL) in the circulation and governs their biogenesis, metabolism, and functional interactions. To decipher these important structure–function relationships, it will be necessary to understand the structure, stability, and plasticity of the apoA-I molecule. Biophysical studies show that lipid-free apoA-I contains a large amount of α-helical structure but the location of this structure and its properties are not established. We used hydrogen-deuterium exchange coupled with a fragmentation-separation method and mass spectrometric analysis to study human lipid-free apoA-I in its physiologically pertinent monomeric form. The acquisition of ≈100 overlapping peptide fragments that redundantly cover the 243-residue apoA-I polypeptide made it possible to define the positions and stabilities of helical segments and to draw inferences about their interactions and dynamic properties. Residues 7–44, 54–65, 70–78, 81–115, and 147–178 form α-helices, accounting for a helical content of 48 ± 3%, in agreement with circular dichroism measurements (49%). At 3 to 5 kcal/mol in free energy of stabilization, the helices are far more stable than could be achieved in isolation, indicating mutually stabilizing helix bundle interactions. However the helical structure is dynamic, unfolding and refolding in seconds, allowing facile apoA-I reorganization during HDL particle formation and remodeling

    Effects of the Iowa and Milano Mutations on Apolipoprotein A‑I Structure and Dynamics Determined by Hydrogen Exchange and Mass Spectrometry

    No full text
    The Iowa point mutation in apolipoprotein A-I (G26R) leads to a systemic amyloidosis condition, and the Milano mutation (R173C) is associated with hypoalphalipoproteinemia, a reduced plasma level of high-density lipoprotein. To probe the structural effects that lead to these outcomes, we used amide hydrogen–deuterium exchange coupled with a fragment separation/mass spectrometry analysis (HX MS). The Iowa mutation inserts an arginine residue into the nonpolar face of an α-helix that spans residues 7–44 and causes changes in structure and structural dynamics. This helix unfolds, and other helices in the N-terminal helix bundle domain are destabilized. The segment encompassing residues 116–158, largely unstructured in wild-type apolipoprotein A-I, becomes helical. The helix spanning residues 81–115 is destabilized by 2 kcal/mol, increasing the small fraction of time it is transiently unfolded to ≄1%, which allows proteolysis at residue 83 in vivo over time, releasing an amyloid-forming peptide. The Milano mutation situated on the polar face of the helix spanning residues 147–178 destabilizes the helix bundle domain only moderately, but enough to allow cysteine-mediated dimerization that leads to the altered functionality of this variant. These results show how the HX MS approach can provide a powerful means of monitoring, in a nonperturbing way and at close to amino acid resolution, the structural, dynamic, and energetic consequences of biologically interesting point mutations
    corecore