301 research outputs found

    Contemporary accounting, a refresher course for public accountants;

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1033/thumbnail.jp

    Short-range cluster spin glass near optimal superconductivity in BaFe2x_{2-x}Nix_{x}As2_{2}

    Get PDF
    High-temperature superconductivity in iron pnictides occurs when electrons are doped into their antiferromagnetic (AF) parent compounds. In addition to inducing superconductivity, electron-doping also changes the static commensurate AF order in the undoped parent compounds into short-range incommensurate AF order near optimal superconductivity. Here we use neutron scattering to demonstrate that the incommensurate AF order in BaFe2x_{2-x}Nix_{x}As2_{2} is not a spin-density-wave arising from the itinerant electrons in nested Fermi surfaces, but consistent with a cluster spin glass in the matrix of the superconducting phase. Therefore, optimal superconductivity in iron pnictides coexists and competes with a mesoscopically separated cluster spin glass phase, much different from the homogeneous coexisting AF and superconducting phases in the underdoped regime.Comment: 4 figure

    Accounting for albedo change to identify climate-positive tree cover restoration

    Get PDF
    Restoring tree cover changes albedo, which is the fraction of sunlight reflected from the Earth’s surface. In most locations, these changes in albedo offset or even negate the carbon removal benefits with the latter leading to global warming. Previous efforts to quantify the global climate mitigation benefit of restoring tree cover have not accounted robustly for albedo given a lack of spatially explicit data. Here we produce maps that show that carbon-only estimates may be up to 81% too high. While dryland and boreal settings have especially severe albedo offsets, it is possible to find places that provide net-positive climate mitigation benefits in all biomes. We further find that on-the-ground projects are concentrated in these more climate-positive locations, but that the majority still face at least a 20% albedo offset. Thus, strategically deploying restoration of tree cover for maximum climate benefit requires accounting for albedo change and we provide the tools to do so

    Virial coefficients of methane, ethane, and their mixtures at low temperatures

    Get PDF
    金沢大学工学部A Burnett apparatus designed specifically loi the measurement of virial coefficients was constructed and used to establish the second and some third virial coefficients of methane, ethane, and five equally spaced compositions at 273.15°, 240.00°, and 215.00°K. Second and third virial coefficients for methane were also determined at 200°, 191.06°, and 131.93°K. By using a gas-lubricated dead-weight gage located in a vacuum of approximately 25 μ Hg, absolute pressures could be read directly. The gage located in an ambient vacuum also allowed the determination of accurate compressibility factors from 40 atm down to the neighborhood of one atmosphere pressure. A recently developed method for the determination of virial coefficients directly from Burnett pressure measurements was applied. The range of the experimental apparatus enabled the determination of several negative values of the third virial coefficients at low reduced temperatures along with positive values at the higher temperatures. The experimental second and third virial coefficients of this and past studies were used to determine the Kihara, Lennard-Jones, and square well potential parameters. The accuracy of the representation of the virial data by the parameters over a wide range of temperatures is given

    Scope for Credit Risk Diversification

    Get PDF
    This paper considers a simple model of credit risk and derives the limit distribution of losses under different assumptions regarding the structure of systematic risk and the nature of exposure or firm heterogeneity. We derive fat-tailed correlated loss distributions arising from Gaussian risk factors and explore the potential for risk diversification. Where possible the results are generalised to non-Gaussian distributions. The theoretical results indicate that if the firm parameters are heterogeneous but come from a common distribution, for sufficiently large portfolios there is no scope for further risk reduction through active portfolio management. However, if the firm parameters come from different distributions, then further risk reduction is possible by changing the portfolio weights. In either case, neglecting parameter heterogeneity can lead to underestimation of expected losses. But, once expected losses are controlled for, neglecting parameter heterogeneity can lead to overestimation of risk, whether measured by unexpected loss or value-at-risk

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore