18 research outputs found

    Longitudinal Momentum Fraction X_L for Two High P_t Protons in pp->ppX Reaction

    Full text link
    We present an analysis of new data from Experiment E850 at BNL. We have characterized the inclusive cross section near the endpoint for pp exclusive scattering in Hydrogen and in Carbon with incident beam energy of 6 GeV. We select events with a pair of back-to-back hadrons at large transverse momentum. These cross sections are parameterized with a form dσdXL\frac{d \sigma}{d X_{L}} (1XL)p\sim(1-X_{L})^{p}, where XL{X_{L}} is the ratio of the longitudinal momentum of the observed pair to the total incident beam momentum. Small value of pp may suggest that the number of partons participating in the reaction is large and reaction has a strong dependence on the center-of-mass energy. We also discuss nuclear effects observed in our kinematic region.Comment: 4 pages, 2 figures, to be published in Proceedings of CIPANP2000, Quebec, May 22-28, 2000, requires aipproc.sty(included

    Physics at the Light-Front

    Get PDF
    The light-front representation of quantum chromodynamics provides a frame-independent, quantum-mechanical representation of hadrons at the amplitude level, capable of encoding their multi-quark, hidden-color and gluon momentum, helicity, and flavor correlations in the form of universal process-independent hadron wavefunctions. The universality and frame-independence of the LCWF's thus allow a profound connection between diffractive dissociation, hard scattering exclusive processes such as elastic form factors, two-photon reactions, and heavy hadron decays. In this concluding talk of the ECT* International Conference On Light-Cone Physics: Particles And Strings (Trento 2001), I review recent calculations and new applications of light-front wavefunctions in QCD and other theories. I also review the distinction between the structure functions measured in deep inelastic lepton scattering and the quark distributions determined from light-front wavefunctions.Comment: Invited talk presented at the International Light-Cone Workshop "Light-cone Physics: Particles and Strings" at ECT* in Trento, Italy, September 3-11, 200

    Subprocess Size in Hard Exclusive Scattering

    Full text link
    The interaction region of hard exclusive hadron scattering can have a large transverse size due to endpoint contributions, where one parton carries most of the hadron momentum. The endpoint region is enhanced and can dominate in processes involving multiple scattering and quark helicity flip. The endpoint Fock states have perturbatively short lifetimes and scatter softly in the target. We give plausible arguments that endpoint contributions can explain the apparent absence of color transparency in fixed angle exclusive scattering and the dimensional scaling of transverse rho photoproduction at high momentum transfer, which requires quark helicity flip. We also present a quantitative estimate of Sudakov effects.Comment: 16 pages, 4 figures, JHEP style; v2: quantitative estimate of Sudakov effects and more detailed discussion of endpoint behaviour of meson distribution amplitude added, few other clarifications, version to appear in Phys. Rev.

    Energy Dependence of Nuclear Transparency in C(p,2p) Scattering

    Get PDF
    The transparency of carbon for (p,2p) quasi-elastic events was measured at beam energies ranging from 6 to 14.5 GeV at 90 degrees c.m. The four momentum transfer squared q*q ranged from 4.8 to 16.9 (GeV/c)**2. We present the observed energy dependence of the ratio of the carbon to hydrogen cross sections. We also apply a model for the nuclear momentum distribution of carbon to normalize this transparency ratio. We find a sharp rise in transparency as the beam energy is increased to 9 GeV and a reduction to approximately the Glauber level at higher energies.Comment: 4 pages, 2figures, submitted to PR

    Investigation of the high momentum component of nuclear wave function using hard quasielastic A(p,2p)X reactions

    Get PDF
    We present theoretical analysis of the first data on the high energy and momentum transfer (hard) quasielastic C(p,2p)XC(p,2p)X reactions. The cross section of hard A(p,2p)XA(p,2p)X reaction is calculated within the light-cone impulse approximation based on two-nucleon correlation model for the high-momentum component of the nuclear wave function. The nuclear effects due to modification of the bound nucleon structure, soft nucleon-nucleon reinteraction in the initial and final states of the reaction with and without color coherence have been considered. The calculations including these nuclear effects show that the distribution of the bound proton light-cone momentum fraction (α)(\alpha) shifts towards small values (α<1\alpha < 1), effect which was previously derived only within plane wave impulse approximation. This shift is very sensitive to the strength of the short range correlations in nuclei. Also calculated is an excess of the total longitudinal momentum of outgoing protons. The calculations are compared with data on the C(p,2p)XC(p,2p)X reaction obtained from the EVA/AGS experiment at Brookhaven National Laboratory. These data show α\alpha-shift in agreement with the calculations. The comparison allows also to single out the contribution from short-range nucleon correlations. The obtained strength of the correlations is in agreement with the values previously obtained from electroproduction reactions on nuclei.Comment: 30 pages LaTex file and 19 eps figure

    Nuclear transparency from quasielastic A(e,e'p) reactions uo to Q^2=8.1 (GeV/c)^2

    Get PDF
    The quasielastic (e,e^\primep) reaction was studied on targets of deuterium, carbon, and iron up to a value of momentum transfer Q2Q^2 of 8.1 (GeV/c)2^2. A nuclear transparency was determined by comparing the data to calculations in the Plane-Wave Impulse Approximation. The dependence of the nuclear transparency on Q2Q^2 and the mass number AA was investigated in a search for the onset of the Color Transparency phenomenon. We find no evidence for the onset of Color Transparency within our range of Q2Q^2. A fit to the world's nuclear transparency data reflects the energy dependence of the free proton-nucleon cross section.Comment: 11 pages, 6 figure

    Relativistic calculation of nuclear transparency in (e,e'p) reactions

    Get PDF
    Nuclear transparency in (e,e'p) reactions is evaluated in a fully relativistic distorted wave impulse approximation model. The relativistic mean field theory is used for the bound state and the Pauli reduction for the scattering state, which is calculated from a relativistic optical potential. Results for selected nuclei are displayed in a Q^2 range between 0.3 and 1.8 (GeV/c)^2 and compared with recent electron scattering data. For Q^2 = 0.3 (GeV/c)^2 the results are lower than data; for higher Q^2 they are in reasonable agreement with data. The sensitivity of the model to different prescriptions for the one-body current operator is investigated. The off-shell ambiguities are rather large for the distorted cross sections and small for the plane wave cross sections.Comment: 8 pages, 3 figure

    Evidence for the Onset of Color Transparency in ρ0\rho^0 Electroproduction off Nuclei

    Get PDF
    We have measured the nuclear transparency of the incoherent diffractive A(e,eρ0)A(e,e'\rho^0) process in 12^{12}C and 56^{56}Fe targets relative to 2^2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0\rho^0's on a nucleus relative to deuterium, which is sensitive to ρA\rho A interaction, was studied as function of the coherence length (lcl_c), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2Q^2). While the transparency for both 12^{12}C and 56^{56}Fe showed no lcl_c dependence, a significant Q2Q^2 dependence was measured, which is consistent with calculations that included the color transparency effects.Comment: 6 pages and 4 figure
    corecore