41 research outputs found

    Predictive value of cerebrospinal fluid visinin-like protein-1 levels for Alzheimer's disease early detection and differential diagnosis in patients with mild cognitive impairment

    Get PDF
    Visinin-like protein 1 (VILIP-1) recently emerged as a potential biomarker of Alzheimer's disease (AD). This neuronal calcium sensor protein previously used as a marker of acute ischemic stroke is elevated in the cerebrospinal fluid (CSF) of AD patients. The goal of this study was to assess CSF VILIP-1 potential in early AD diagnosis and in differentiating mild cognitive impairment (MCI) patients with and without risk of AD. Additionally, we tested VILIP-1 ability to differentiate AD from other primary causes of dementia, and predict the progression of AD-related cognitive decline. VILIP-1 levels were compared with five CSF AD biomarkers (t-tau, AĪ²1-42, p-tau181, p-tau199, and p-tau231). VILIP-1 successfully differentiated two MCI patient groups characterized by absence or presence of pathological levels of these CSF biomarkers, except for t-tau. VILIP-1/AĪ²(1-42) and VILIP-1/p-tau181 ratios also differentiated MCI patients with pathological CSF biomarker levels. However, there was no difference in VILIP-1 levels between AD and MCI patients. VILIP-1/AĪ²(1-42) and VILIP-1/p-tau231 ratios reached high sensitivities (above 70%) and very high specificities (above 85%) in differentiating AD patients from HC. Additionally, VILIP-1 differentiated AD from patients with Lewy body disease with 77.1% sensitivity and 100% specificity. VILIP-1 potential as a prognostic biomarker of cognitive decline in AD was also proved since VILIP-1/t-tau, VILIP-1/p-tau181, and VILIP-1/p-tau231 ratios correlated with MMSE scores. These data indicate that VILIP-1 alone or in combination with other AD CSF biomarkers represent a valuable marker for the early diagnosis of AD, recognition of MCI patients at higher risk to develop dementia, and in differentiating AD from LBD

    Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species

    Get PDF
    Background: Early stages of Alzheimer's disease (AD) are characterized by high phosphorylation of microtubule-associated protein tau, which may result from the downregulation of protein phosphatases. ----- New method: In order to model phosphatase downregulation and analyze its effect on tau aggregation in vitro, we treated neuroblastoma SH-SY5Y cells with okadaic acid (OA), a protein phosphatase inhibitor, and examined high molecular weight phospho-tau species. ----- Results and comparison with existing methods: OA treatment led to the appearance of heat-stable protein species with apparent molecular weight around 100 kDa, which were immunoreactive to anti-tau antibodies against phosphorylated Ser202 and Ser396. As these high molecular weight tau-immunoreactive proteins (HMW-TIPs) corresponded to the predicted size of two tau monomers, we considered the possibility that they represent phosphorylation-induced tau oligomers. We attempted to dissociate HMW-TIPs by urea and guanidine, as well as by alkaline phosphatase treatment, but HMW-TIPs were stable under all conditions tested. These characteristics resemble properties of certain sodium dodecyl sulfate (SDS)-resistant tau oligomers from AD brains. The absence of HMW-TIPs detection by anti-total tau antibodies Tau46, CP27 and Tau13 may be a consequence of epitope masking and protein truncation. Alternatively, HMW-TIPs may represent previously unreported phosphoproteins cross-reacting with tau. ----- Conclusions: Taken together, our data provide a novel characterization of an OA-based cell culture model in which OA induces the appearance of HMW-TIPs. These findings have implications for further studies of tau under the conditions of protein phosphatase downregulation, aiming to explain mechanisms involved in early events leading to AD

    Thyroid Hormones Are Not Associated with Plasma Osteocalcin Levels in Adult Population with Normal Thyroid Function

    Get PDF
    Thyroid hormones (THs) play an indispensable role in skeletal development and bone remodeling. Some studies have reported associations of THs with serum osteocalcin (OC) levels, but the results are quite inconsistent and the molecular mechanism of their simultaneous or interdependent activity on bone is almost unknown. Therefore, the aim of this study was to determine the possible associations of plasma THs with plasma OC levels and the possible mediating effect of OC on the relationship between THs and bone mineral density (BMD). For this purpose, out of the initial 1981 participants, we selected healthy euthyroid participants controlled for available confounding factors that can affect thyroid function and bone metabolism (N = 694). Given our results, we could not confirm any associations of THs with plasma OC levels nor the mediating effect of OC on the relationship between THs and BMD in euthyroid population. In the group of women controlled for menopause status (N = 396), we found a significant negative association of body mass index (BMI) with OC levels (Ī² = āˆ’0.14, p = 0.03). We also found a negative association of free triiodothyronine (fT3) (Ī² = āˆ’0.01, p = 0.02) and age (Ī² = āˆ’0.003, p < 0.001) with BMD, and a positive association of BMI (Ī² = 0.004, p < 0.001) and male gender (Ī² = 0.1, p < 0.001) with BMD. In addition, we found significantly higher plasma OC levels and lower values of BMD in postmenopausal euthyroid women compared with premenopausal euthyroid women. In our opinion, the results of previous studies suggesting an association between circulating THs and serum OC levels may be influenced by an inconsistent selection of participants and the influence of confounding factors

    Tau Protein Hyperphosphorylation and Aggregation in Alzheimerā€™s Disease and Other Tauopathies, and Possible Neuroprotective Strategies

    Get PDF
    Acknowledgments This work was supported by The Croatian Science Foundation grant No. IP-2014-09-9730 (ā€œTau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimerā€™s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compoundsā€) and European Cooperation in Science and Technology (COST) Action CM1103 (ā€œStucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brainā€). PRH is supported in part by NIH grant P50 AG005138. We also thank Mate Babić for help in preparation of schematics.Peer reviewedPublisher PD

    Monoaminergic Neuropathology in Alzheimer's disease

    Get PDF
    Acknowledgments This work was supported by The Croatian Science Foundation grant. no. IP-2014-09-9730 (ā€œTau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimerā€™s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compoundsā€) and European Cooperation in Science and Technology (COST) Action CM1103 (ā€œStucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brainā€). PRH is supported in part by NIH grant P50 AG005138.Peer reviewedPostprin

    Association of MAPT haplotype-tagging polymorphisms with cerebrospinal fluid biomarkers of Alzheimer's disease: a preliminary study in a Croatian cohort

    Get PDF
    INTRODUCTION: Alzheimer's disease (AD) is the world leading cause of dementia. Early detection of AD is essential for faster and more efficacious usage of therapeutics and preventive measures. Even though it is well known that one Īµ4 allele of apolipoprotein E gene increases the risk for sporadic AD five times, and that two Īµ4 alleles increase the risk 20 times, reliable genetic markers for AD are not yet available. Previous studies have shown that microtubule-associated protein tau (MAPT) gene polymorphisms could be associated with increased risk for AD. ----- METHODS: The present study included 113 AD patients and 53 patients with mild cognitive impairment (MCI), as well as nine healthy controls (HC) and 53 patients with other primary causes of dementia. The study assessed whether six MAPT haplotype-tagging polymorphisms (rs1467967, rs242557, rs3785883, rs2471738, del-In9, and rs7521) and MAPT haplotypes are associated with AD pathology, as measured by cerebrospinal fluid (CSF) AD biomarkers amyloid Ī²1-42 (AĪ²1-42 ), total tau (t-tau), tau phosphorylated at epitopes 181 (p-tau181 ), 199 (p-tau199 ), and 231 (p-tau231 ), and visinin-like protein 1 (VILIP-1). ----- RESULTS: Significant increases in t-tau and p-tau CSF levels were found in patients with AG and AA MAPT rs1467967 genotype, CC MAPT rs2471738 genotype and in patients with H1H2 or H2H2 MAPT haplotype. ----- CONCLUSIONS: These results indicate that MAPT haplotype-tagging polymorphisms and MAPT haplotypes should be further tested as potential genetic biomarkers of AD

    Evaluation of cerebrospinal fluid phosphorylated tau231 as a biomarker in the differential diagnosis of Alzheimer's disease and vascular dementia

    Get PDF
    BACKGROUND: The diagnosis of either Alzheimer's disease (AD) or vascular dementia (VaD) is still largely based on clinical guidelines and exclusion of other diseases that may lead to dementia. ----- AIMS: In this study, we assessed whether the use of sensitive and specific biomarkers such as phosphorylated tau proteins could contribute to an earlier and more accurate diagnosis of AD and VaD, as well as to their differentiation. ----- MATERIAL AND METHODS: A total of 198 patients, of which 152 had AD, 28 VaD, and 18 were healthy controls (HC), were included in the analyses. We analyzed cerebrospinal fluid (CSF) levels of total tau protein (t-tau), tau protein phosphorylated at threonine 231 (p-tau231), and factor score (FS) determined by combination of p-tau231 and Mini-Mental State Examination (MMSE) in patients with AD and VaD, as well as in HC. We tested the diagnostic accuracy of these biomarkers in the CSF and FS (p-tau231, MMSE) in differentiating AD from VaD and HC. ----- RESULTS: Total tau levels were significantly elevated in subjects with AD compared to HC, as well as in VaD subjects compared to HC. ----- DISCUSSION: p-tau231 levels were significantly higher in patients with ADvsHC as well in patients with VaD vsHC. p-tau231 levels did not distinguish AD from VaD patients. Importantly, FS(p-tau231 and MMSE) showed statistically significant differences in the distribution of subjects with AD and VaD. ----- CONCLUSION: These results indicate that FS (p-tau231 and MMSE) has a strong potential to provide an early distinction between AD and VaD

    Increased NLRP1 mRNA and Protein Expression Suggests Inflammasome Activation in the Dorsolateral Prefrontal and Medial Orbitofrontal Cortex in Schizophrenia

    Get PDF
    Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal immune activation and neuroinflammation, we studied NLRP1 expression and content in the postmortem brain tissue of 10 schizophrenia and 10 control subjects. In the medial orbitofrontal cortex (Brodmannā€™s area 11/12) and dorsolateral prefrontal cortex (area 46) from both hemispheres of six schizophrenia subjects, the NLRP1 mRNA expression was significantly higher than in six control brains (p < 0.05). As the expression difference was highest for the medial orbitofrontal cortex in the right hemisphere, we assessed NLRP1-immunoreactive pyramidal neurons in layers III, V, and VI in the medial orbitofrontal cortex in the right hemisphere of seven schizophrenia and five control brains. Compared to controls, we quantified a significantly higher number of NLRP1-positive pyramidal neurons in the schizophrenia brains (p < 0.01), suggesting NLRP1 inflammasome activation in schizophrenia subjects. Layer III pyramidal neuron dysfunction aligns with working memory deficits, while impairments of pyramidal neurons in layers V and VI likely disrupt predictive processing. We propose NLRP1 inflammasome as a potential biomarker and therapeutic target in schizophrenia
    corecore