29 research outputs found

    Evaluation of the effects of short-term amendment with olive mill pomace on some soil properties

    Get PDF
    The extraction of olive oil produces an enormous quantity of waste, such as olive mill wastewater (OMWW) and olive mill pomace (OMP), The majority of the agricultural wastes, including olive oil mill waste, are used as soil amendments due to their high nutritional value. The purpose of this study was to investigate the effects of the amendment with olive mill pomace from a 3-phase cold-pressed system on the characteristics of the soil pH, electrical conductivity (EC), and organic matter content (OM). The experiment was carried out using increasing rates of olive mill pomace (12.5%, 25%, 50%, 75%, and 100% w/w) plus the control untreated soil in microcosms under laboratory conditions. The results showed that the treatment of soil with olive mill pomace has a significant effect on soil properties (pH, EC, OM, OC, and CaCO3) soil pH was decreased under OMP treatment, especially with high doses of PR4 and PR5, and the electrical conductivity of the soil (EC) was increased, as well as soil carbonate content. Moreover, the soil organic matter content and soil organic carbon content were highly increased under the treatment with OMP. As a result, we can consider the olive mill pomace as a soil fertilizer. Pretreatment of olive mill pomace to reduce acidic pH and salt content before use as a soil amendment is also recommended. © 2022 by the authors

    Investigation of photoprotective, anti-inflammatory, antioxidant capacities and lc–esi–ms phenolic profile of astragalus gombiformis pomel

    Get PDF
    Plant-derived compounds have recently been gaining popularity as skincare factors due to their ability to absorb ultraviolet radiations and their anti-inflammatory, and antioxidant properties. In this light, this work aimed to evaluate in vitro the pharmacological activities of the butanolic extract prepared from the aerial parts of Astragalus gombiformis Pomel, an endemic species to southern Algeria. The sun protection factor was used to assess the photoprotective effect (SPF), the protein denaturation method to determine the anti-inflammatory activity, and brine shrimp nauplii and OxHLIA assay, respectively, to assess the cytotoxicity and antioxidant capacity of A. gombiformis. In addition, LC–ESI–MS analysis was employed for the characterization of the phenolic constituents of A. gombiformis. The results showed that A. gombiformis had high capacity for absorbing UV radiations with an SPF of 37.78 ± 0.85 and significant anti-inflammatory activity with a percentage inhibition of 75.38% which is close to that of diclofenac and ketoprofen. In addition, A. gombiformis was found to have effective cytotoxicity against Artemia nauplii with a DC50 value of about 44.7 µg/mL, but a weak hemolytic effect against human erythrocytes. LC–ESI–MS results detected the presence of 17 phenolic compounds with a predominance of cirsiliol, silymarin, quercitrin (quercetin-3-O-rhamnoside), and kaempferol. Taken together, these results suggest that A. gombiformis extract could be used as a skincare agent in cosmetic formulations, providing excellent antioxidant and anti-inflammatory protection, allowing the treatment of skin conditions, as well as a pharmaceutical agent with multidimensional applications.The authors are grateful to the Algerian Ministry of Higher Education and Scientific Research and the National Centre for Biotechnology Research (C.R.B.T) for their respective financial and material supports

    Ultrasound-assisted extraction, LC–MS/MS analysis, anticholinesterase, and antioxidant activities of valuable natural netabolites from Astragalus armatus Willd.: In silico molecular docking and In Vitro enzymatic studies

    Get PDF
    The Astragalus armatus Willd. plant’s phenolic constituent extraction and identification were optimized using the ultrasound-assisted extraction (UAE) method and the LC–MS/MS analysis, respectively. Additionally, cupric reducing antioxidant capacity (CUPRAC), beta carotene, reducing power, DMSO alcalin, silver nanoparticle (SNP)-based method, phenanthroline, and hydroxyl radical tests were utilized to assess the extract’s antioxidant capacity, while the neuroprotective effect was examined in vitro against acetylcholinesterase enzyme. This study accurately estimated the chemical bonding between the identified phenolic molecules derived from LC–MS/MS and the AChE. The extract was found to contain sixteen phenolic substances, and rosmarinic, protocatechuic, and chlorogenic acids, as well as 4-hydroxybenzoic, hyperoside, and hesperidin, were the most abundant substances in the extract. In all antioxidant experiments, the plant extract demonstrated strong antioxidant activity and a significant inhibitory impact against AChE (40.25 ± 1.41 μg/mL). According to molecular docking affinity to the enzyme AChE, the top-five molecules were found to be luteolin, quercetin, naringenin, rosmarinic acid, and kaempferol. Furthermore, these tested polyphenols satisfy the essential requirements for drug-like characteristics and Lipinski’s rule of five. These results highlight the significance of the A. armatus plant in cosmetics, as food additives, and in the pharmaceutical industry due to its rosmarinic and chlorogenic acid content

    Efficiency of Hydrogen Peroxide and Fenton Reagent for Polycyclic Aromatic Hydrocarbon Degradation in Contaminated Soil: Insights from Experimental and Predictive Modeling

    Get PDF
    \ua9 2024 by the authors.This study investigates the degradation kinetics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil using hydrogen peroxide (H2O2) and the Fenton process (H2O2/Fe2+). The effect of oxidant concentration and the Fenton molar ratio on PAH decomposition efficiency is examined. Results reveal that increasing H2O2 concentration above 25 mmol/samples leads to a slight increase in the rate constants for both first- and second-order reactions. The Fenton process demonstrates higher efficiency in PAH degradation compared to H2O2 alone, achieving decomposition yields ranging from 84.7% to 99.9%. pH evolution during the oxidation process influences PAH degradation, with alkaline conditions favoring lower elimination rates. Fourier-transform infrared (FTIR) spectroscopy analysis indicates significant elimination of PAHs after treatment, with both oxidants showing comparable efficacy in complete hydrocarbon degradation. The mechanisms of PAH degradation by H2O2 and the Fenton process involve hydroxyl radical formation, with the latter exhibiting greater efficiency due to Fe2+ catalysis. Gaussian process regression (GPR) modeling accurately predicts reduced concentration, with optimized ARD-Exponential kernel function demonstrating superior performance. The Improved Grey Wolf Optimizer algorithm facilitates optimization of reaction conditions, yielding a high degree of agreement between experimental and predicted values. A MATLAB 2022b interface is developed for efficient optimization and prediction of C/C0, a critical parameter in PAH degradation studies. This integrated approach offers insights into optimizing the efficiency of oxidant-based PAH remediation techniques, with potential applications in contaminated soil remediation

    Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    Get PDF
    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses

    A comparative study on chemical profile and biological activities of aerial parts (stems, flowers, leaves, pods and seeds) of Astragalus gombiformis

    No full text
    The present work aims to characterize the chemical profile of phenolic compounds and some biological activities of Astragalus gombiformis. The butanolic fractions of five aerial organs (stems, flowers, leaves, pods and seeds) were quantified and identified by LC–MS analysis. The results were revealed the presence of 13 phenolic compounds (quinic acid, p-coumaric acid, transfrulic acid, Hyperoside (quercetin-3-o-galactoside, Quercetrin (quercetin-3-o-rhamonoside), Apegenin-7-o-glucoside, kampherol, Naringenin, Apegenin, Luteolin, Cirsiliol, Cirsilineol and Acacetin. In terms of biological activities, the antioxidant,α-amylase inhibitory and anticholinesterase were determined. The butanolic extract from flowers showed the highest antioxidant activity in DPPH and ABTS(IC50: 16, 43 ± 0, 46 and 16, 13 ± 0, 35 μg/mL) very closer with standards tested and week activity with Galvinoxyl radical (GOR) (IC50: 583, 95 ± 2, 20 μg/mL), while other organ's extract exhibited moderate antioxidant activity. The leaves extract was found to exhibit the highest inhibitory effect against BChE (IC50: 165,54 ± 3,49 μg/mL) compared by the other parts which give a weak inhibitory effect at 200 μg/mL. A significant alpha-amylase inhibitory activity was displayed by seeds, leaves, pods and stems extracts (IC50:76.41 ± 3.72; 74.61 ± 3.68; 88.13 ± 1.81 and 83.81 ± 1.74 μg/mL) more the standard used. Based on these results, it is right to conclude that A. gombiformis is important source of the natural anti-diabetic, antioxidants and anti-Alzheimer′s disease.The authors are grateful to the Algerian Ministry of Higher Education and Scientific Research and the National Centre for Biotechnology Research (C.R.B.T) for their respective financial and material supports

    LC/MS-MS Analysis of Phenolic Compounds in Hyoscyamus albus L. Extract: In Vitro Antidiabetic Activity, In Silico Molecular Docking, and In Vivo Investigation against STZ-Induced Diabetic Mice

    No full text
    This study aimed to investigate the chemical composition and antidiabetic properties of cultivated Hyoscyamus albus L. The ethanol extract was analyzed using LC-MS/MS, and 18 distinct phenolic compounds were identified. Among these, p-coumaric acid (6656.8 ± 3.4 µg/g), gallic acid (6516 ± 1.7 µg/g), luteolin (6251.9 ± 1.3 µg/g), apigenin (6209.9 ± 1.1 µg/g), and rutin (5213.9 ± 1.3 µg/g) were identified as the most abundant polyphenolic molecules. In the in vitro antidiabetic experiment, the ability of the plant extract to inhibit α-glucosidase and α-amylase activities was examined. The results indicated that the extract from H. albus L. exhibited a higher inhibitory effect on α-amylase compared to α-glucosidase, with an IC50 of 146.63 ± 1.1 µg/mL and 270.43 ± 1.1 µg/mL, respectively. Docking simulations revealed that luteolin, fisetin, and rutin exhibited the most promising inhibitory activity against both enzymes, as indicated by their high contrasting inhibition scores. To further investigate the in vivo antidiabetic effects of H. albus L., an experiment was conducted using STZ-induced diabetic mice. The results demonstrated that the plant extract effectively reduced the levels of cholesterol and triglycerides. These findings suggest that H. albus L. may have therapeutic potential for managing hyperlipidemia, a common complication associated with diabetes. This highlights its potential as a natural remedy for diabetes and related conditions
    corecore