61 research outputs found

    Genotyping for Plasmodium spp.: Diagnosis and Monitoring of Antimalarial Drug Resistance

    Get PDF
    Malaria is one the world’s most widespread lethal diseases. Plasmodium falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi induce human pathology. These species could be differentially diagnosed using the genotyping of cytochrome b, Pfdhfr and RNA 18S. The persistence of P. falciparum, the most lethal parasite, is mainly due to antimalarial drug resistance. Indeed, a few years after the start of the ambitious malaria eradication program in 1960, chloroquine resistance emerged in Asia and spread widely in all the endemic areas. It was associated with genotypes in P. falciparum chloroquine resistance transporter (CVIET, SVMNT, CVMNT, CVIDT, SVIET and CVMET). The use of new drugs such as sulfadoxine-pyrimethamine (SP) leads quickly to SP-resistant parasites associated with genotypes on P. falciparum DiHydroFolate reductase (I51-R59-N108-I164) and P. falciparum DiHydroPteroate synthetase (436-437-580-613). Recently, the delay of parasite clearance has been described with artemisinine (the most efficacious antimalarial drug). This resistance was associated with the K13 propeller genotype. Since malaria species and antimalarial drug resistance markers could be characterized using nucleic acid sequences, genotyping is needed for malarial monitoring of species distribution and antimalarial drug resistance

    A cross-sectional study of malaria transmission in suggests the existence of a potential bridge vector susceptible of ensuring the transfer of simian malaria parasites to humans

    Get PDF
    Introduction: Despite all the efforts made to control or even eliminate malaria, the disease continues to claim the highest number of victims of vector-borne pathogens in the world and Sub-Saharan countries bear the heaviest burden. The lack of knowledge of the role of various protagonists involved in the transmission of this parasitic disease, such as mosquito vectors and the plasmodial species they transmit as well as the host species they infect in a locality, constitutes one of the main causes of the persistence of malaria. In Gabon, in several areas, entomological data on malaria transmission remain poorly known. Thus, this study aimed to determine the diversity of Anopheles involved in malaria transmission in different environments of the province of Nyanga in southwest Gabon.Methods: For this, an entomological study was carried out in the four main localities of the province of Nyanga to provide answers to these shortcomings. Mosquitoes were collected over several nights using the human landing catch method. The identification of Anopheles and malaria parasites circulating in the different sites was achieved by combining morphological and molecular analysis tools.Results: A total of five hundred and ninety-one (591) mosquitoes belonging to the Culicidae family were collected. From this collection of adult mosquitoes, nine species of Anopheles mosquitoes notably species of the Anopheles nili complex (53.46%) followed by those of Anopheles gambiae complex (22.01%), Anopheles funestus group (18.24%), Anopheles moucheti complex (5.66%) and Anopheles hancocki (0.63%). Approximately 18 percent of these Anopheles species were infected with Plasmodium spp. Anopheles funestus, known to be involved in malaria transmission to humans, and An. moucheti-like, recently discovered in Gabon, and whose status in Plasmodium transmission is not yet elucidated, were found to be infected with great ape Plasmodium.Discussion: Our results raise the question of the potential switch of simian malaria parasites to humans. If these observations are confirmed in the future, and the infective capacity of the bridge vectors is demonstrated, this new situation could ultimately constitute an obstacle to progress in the fight against malaria

    Epidemiology of malaria in Gabon: A systematic review and meta-analysis from 1980 to 2023.

    Get PDF
    The objective of this were conducted to elucidate spatiotemporal variations in malaria epidemiology in Gabon since 1980. For that, five databases, were used to collect and identify all studies published between 1980 and 2023 on malaria prevalence, antimalarial drug resistance, markers of antimalarial drug resistance and insecticide resistance marker. The findings suggest that Gabon continues to face malaria as an urgent public health problem, with persistently high prevalence rates. Markers of resistance to CQ persist despite its withdrawal, and markers of resistance to SP have emerged with a high frequency, reaching 100 %, while ACTs remain effective. Also, recent studies have identified markers of resistance to the insecticides Kdr-w and Kdr-e at frequencies ranging from 25 % to 100 %. Ace1R mutation was reported with a frequency of 0.4 %. In conclusion, the efficacy of ACTs remains above the threshold recommended by the WHO. Organo-phosphates and carbamates could provide an alternative for vector control. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.

    Retraction.

    Get PDF
    This is a retraction of 'Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa' 10.1126/science.add873

    Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa.

    Get PDF
    The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Paludisme grave (protéines de surface de l'hématie parasitée par P. Falciparum impliquées dans la séquestration parasitaire)

    No full text
    Les formes graves du paludisme sont associées à la séquestration parasitaire. Les protéines de surface des hématies parasitées (HP) sont à la fois les ligands de cette séquestration et les cibles de la réponse immunitaire. Elles représentent donc des candidats potentiels pour le développement d'une stratégie antipaludique. La cytoadhérence placentaire des HP matures est régie par l'interaction du DBLy3 de PfEMP1 avec la CSA alors que RSP2 est le ligand des formes jeunes. La production d'anticorps conformationnels contre les antigènes mineurs représente un obstacle majeur. Pour outrepasser cela, nous avons développé la technique d'immunisation des souris précédemment rendues tolérantes. Ainsi, nous avons produit des anticorps monoclonaux qui reconnaissent des conformations natives du DBLy3 (CSA) et RSP2. Après l'expression de DBLy3 (CSA) fonctionnelle dans le système d'expression des cellules d'insectes, nous avons produit des anticorps anti_DBLy3 (CSA) inhibant la cytoadhérence chez le singe et la souris. Ces anticorps nous ont permis de montrer que le DBL contient des épitopes conservés malgré sa diversité des séquences primaires. Les anticorps anti-RSP2 inhibent la cytoadhérence des formes jeunes des HP (CSA) et l'invasion des mérozoïtes. Ces anticorps nous ont permis de montrer que l'expression de RSP2 commence au stade trophozoïte, et qu'elle est accumulée dans les rhoptries avant d'être transportée à la surface du mérozoïte. RSP2 est transférée à la surface de l'hématie lorsque le mérozoïte s'y attache, sans que l'invasion ne soit nécessaire. Réunis, ces résultats promeuvent l'élaboration d'une stratégie thérapeutique anti- séquestration contre le paludisme gestationnel, et plus généralement contre la cytoadhérence des HP (CSA).PARIS12-CRETEIL BU Multidisc. (940282102) / SudocSudocFranceF
    • …
    corecore