375 research outputs found
Toward equilibrium ground state of charge density waves in rare-earth tritellurides
We show that the charge density wave (CDW) ground state below the Peierls
transition temperature, , of rare-earth tritellurides is not at its
equilibrium value, but depends on the time where the system was kept at a fixed
temperature below . This ergodicity breaking is revealed by the
increase of the threshold electric field for CDW sliding which depends
exponentially on time. We tentatively explain this behavior by the
reorganization of the oligomeric (Te) sequence forming the CDW
modulation.Comment: 10 pages, 5 figures, accepted in PR
Observation of two species of vortices in the anisotropic spin-triplet superconductor
Magnetic flux structures in single crystals of the layered spin triplet
superconductor SrRuO are studied by scanning micro SQUID Force
microscopy. Vortex chains appear as the applied field is tilted along the
in-plane direction of the superconductor. The vortex chains align along the
direction of the in-plane component of the applied magnetic field. The
decoration of in-plane vortices by crossing Abrikosov vortices is observed: two
vortex orientations are apparent simultaneously, one along the layers and the
other perpendicular to the layers. The crossing vortices appear preferentially
on the in-plane vortices
Total suppression of superconductivity by high magnetic fields in YBa2 Cu3O6.6
We have studied in fields up to 60T the variation of the transverse
magnetoresistance (MR) of underdoped YBCO6.6 crystals either pure or with Tc
reduced down to 3.5K by electron irradiation. We evidence that the normal state
MR is restored above a threshold field H'c(T), which is found to vanish at
T'c>>Tc. In the pure YBCO6.6 sample a 50 Tesla field is already required to
completely suppress the superconducting fluctuations at Tc. While disorder does
not depress the pseudogap temperature, it reduces drastically the phase
coherence established at Tc and weakly H'c(0), T'c and the onset Tnu of the
Nernst signal which are more characteristic of the 2D local pairing.Comment: 4 pages, 4 figure
Nernst effect and disorder in the normal state of high-T_{c} cuprates
We have studied the influence of disorder induced by electron irradiation on
the Nernst effect in optimally and underdoped YBa2Cu3O(7-d) single crystals.
The fluctuation regime above T_{c} expands significantly with disorder,
indicating that the T_{c} decrease is partly due to the induced loss of phase
coherence. In pure crystals the temperature extension of the Nernst signal is
found to be narrow whatever the hole doping, contrary to data reported in the
low-T_{c} cuprates families. Our results show that the presence of "intrinsic"
disorder can explain the enhanced range of Nernst signal found in the pseudogap
phase of the latter compounds.Comment: revised version. to be published in Physical Review Letter
Absence of Ferromagnetism in Mn-doped Tetragonal Zirconia
In a recent letter, it has been predicted within first principle studies that
Mn-doped ZrO2 compounds could be good candidate for spintronics application
because expected to exhibit ferromagnetism far beyond room temperature. Our
purpose is to address this issue experimentally for Mn-doped tetragonal
zirconia. We have prepared polycrystalline samples of Y0.15(Zr0.85-yMny)O2
(y=0, 0.05, 0.10, 0.15 & 0.20) by using standard solid state method at
equilibrium. The obtained samples were carefully characterized by using x-ray
diffraction, scanning electron microscopy, elemental color mapping, X-ray
photoemission spectroscopy and magnetization measurements. From the detailed
structural analyses, we have observed that the 5% Mn doped compound
crystallized into two symmetries (dominating tetragonal & monoclinic), whereas
higher Mn doped compounds are found to be in the tetragonal symmetry only. The
spectral splitting of the Mn 3s core-level x-ray photoelectron spectra confirms
that Mn ions are in the Mn3+ oxidation state and indicate a local magnetic
moment of about 4.5 {\mu}B/Mn. Magnetic measurements showed that compounds up
to 10% of Mn doping are paramagnetic with antiferromagnetic interactions.
However, higher Mn doped compound exhibits local ferrimagnetic ordering. Thus,
no ferromagnetism has been observed for all Mn-doped tetragonal ZrO2 samples.Comment: 20 pages, 4 figure
Low energy magnetic excitation spectrum of the unconventional ferromagnet CeRhB
The magnetic excitation spectrum of the unconventional ferromagnet
CeRhB was measured by inelastic neutron scattering on single
crystal sample in the magnetically ordered and paramagnetic phases. The
spin-wave excitation spectrum evidences high exchange interaction along the
c-axis about two orders of magnitude higher than the ones in the basal plane of
the hexagonal structure. Both strong out of plane and small in plane
anisotropies are found. This latter point confirms that considering the =5/2
multiplet alone is not adequate for describing the ground state of
CeRhB. Quasielastic scattering measured above is also
strongly anisotropic between the basal plane and the c-axis and suggests
localized magnetism.Comment: 8 Figure
- …