23 research outputs found

    Slow progression of pediatric HIV associates with early CD8+ T cell PD-1 expression and a stem-like phenotype

    Get PDF
    HIV non-progression despite persistent viraemia is rare among antiretroviral therapy (ART)-naïve adults, but relatively common among ART-naïve children. Previous studies indicate that ART-naïve paediatric slow-progressors (PSPs) adopt immune evasion strategies similar to those described in the SIV natural hosts. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8+ T-cells immediately prior to ATI was the main predictor of slow progression during ATI (r=0.77, p=0.002). PD-1+ CD8+ T-cell frequency was also negatively correlated with CCR5 (r=-0.74, p=0.005) and HLA-DR (r=-0.63, p=0.02) expression on CD4+ T-cells and predicted stronger HIV-specific T-lymphocyte responses. In the CD8+ T-cell compartment of PSPs, we identified an enrichment of stem-like TCF-1+PD-1+ memory cells, whereas paediatric progressors and viraemic adults were populated with a terminally exhausted PD-1+CD39+ population. TCF-1+PD-1+ expression on CD8+ T-cells was associated with higher proliferative activity (r=0.41, p=0.03) and stronger Gag-specific effector functionality. These data prompt the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in early-ART-treated infants with a preserved and non-exhausted T-cell compartment

    Slow progression of pediatric HIV associates with early CD8 + T cell PD-1 expression and a stem-like phenotype

    Get PDF
    HIV nonprogression despite persistent viremia is rare among adults who are naive to antiretroviral therapy (ART) but relatively common among ART-naive children. Previous studies indicate that ART-naive pediatric slow progressors (PSPs) adopt immune evasion strategies similar to those described in natural hosts of SIV. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8 + T cells immediately before ATI was the main predictor of slow progression during ATI. PD-1 + CD8 + T cell frequency was also negatively correlated with CCR5 and HLA-DR expression on CD4 + T cells and predicted stronger HIV-specific T lymphocyte responses. In the CD8 + T cell compartment of PSPs, we identified an enrichment of stem-like TCF-1 + PD-1 + memory cells, whereas pediatric progressors and viremic adults had a terminally exhausted PD-1 + CD39 + population. TCF-1 + PD-1 + expression on CD8 + T cells was associated with higher proliferative activity and stronger Gag-specific effector functionality. These data prompted the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in infants who received early ART with a preserved and nonexhausted T cell compartment

    Subdominant Gag-specific anti-HIV efficacy in an HLA-B*57-positive elite controller

    No full text
    Despite the discovery of HIV over three decades ago, the 2008 ‘Berlin patient’ is the only case of sustained HIV remission. Other cases of apparent ‘cure’ eventually relapsed [1] and although early antiretroviral therapy (ART) has recently gained traction as a factor contributing to remission [2,3], most cases are likely to relapse [4]. In contrast, relapse in ‘elite controllers’ of HIV infection is less common. These are ART-naïve individuals who spontaneously suppress viremia to undetectable levels. Approximately 40% of elite controllers express HLA-B*57 [5], an example being the original 1999 ‘Berlin patient’, in whom virologic control has been maintained for >15 years to date [6]

    Phosphorylation in the amino terminus of tau prevents inhibition of anterograde axonal transport

    No full text
    Alzheimer\u27s disease (AD) and other tauopathies are characterized by fibrillar inclusions composed of the microtubule-associated protein, tau. Recently, we demonstrated that the N-terminus of tau (amino acids [aa] 2-18) in filamentous aggregates or N-terminal tau isoforms activate a signaling cascade involving protein phosphatase 1 and glycogen synthase kinase 3 that results in inhibition of anterograde fast axonal transport (FAT). We have termed the functional motif comprised of aa 2-18 in tau the phosphatase-activating domain (PAD). Here, we show that phosphorylation of tau at tyrosine 18, which is a fyn phosphorylation site within PAD, prevents inhibition of anterograde FAT induced by both filamentous tau and 6D tau. Moreover, Fyn-mediated phosphorylation of tyrosine 18 is reduced in disease-associated forms of tau (e.g., tau filaments). A novel PAD-specific monoclonal antibody revealed that exposure of PAD in tau occurs before and more frequently than tyrosine 18 phosphorylation in the evolution of tangle formation in AD. These results indicate that N-terminal phosphorylation may constitute a regulatory mechanism that controls tau-mediated inhibition of anterograde FAT in AD
    corecore