188 research outputs found

    RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems

    Full text link
    The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors-Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2)(1-4) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins-molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-kappaB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (T(H)1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62842/1/416194a.pd

    A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network.</p> <p>Methods</p> <p>We simulate transmission of a vaccine-prevetable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection.</p> <p>Results</p> <p>We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective.</p> <p>Conclusion</p> <p>For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled.</p

    Evaluation of a Dutch school-based depression prevention program for youths in highrisk neighborhoods: study protocol of a two-armed randomized controlled trial

    Get PDF
    Contains fulltext : 102517.pdf (publisher's version ) (Open Access)Background Research has indicated that depression prevention programs attenuate the development of symptoms of depression in adolescents. To implement these programs on a large scale, implementation in a school setting with teachers providing the programs is needed. In the present study, the effectiveness of the Dutch depression prevention program Op Volle Kracht (OVK) provided by school teachers during school hours with adolescents from high risk neighborhoods will be tested. The mediating effects of cognitive distortions and alexithymia will be evaluated as well. We hypothesize that the OVK program will prevent or decrease reported depressive symptoms, and that this association will be mediated by cognitive distortions and alexithymia. Methods/Design Schools with at least 30% of their pupils living in low income areas in the Netherlands are invited to participate in the study. Classes from vocational training up to pre-university level are eligible and 1324 adolescents (11-14 years) will be participating in the study. Randomisation will be done at class level, randomly assigning participants to an intervention group (OVK) and a control group (care as usual), stratifying by school level (high versus low). Trained school teachers will be delivering the program, which covers cognitive-behavioral and social problem-solving skills. Longitudinal data will be collected with self-report measurements administered in the school setting at baseline, post intervention and at two follow ups (at 6 and 12 months). Primary outcome is the level of depressive symptoms, and secondary outcomes include: cognitive errors, response style, attributional style, alexithymia, stressful life events, substance use, happiness, and school grades. Discussion If the OVK program proves to be effective when it is provided by school teachers, a structural implementation of the program in the school curriculum will enhance the quality of the lives of adolescents and their families and will reduce costs in health care. In addition, the results of the study advances current knowledge on the underlying mechanisms of the development of depression and may aid the improvement of depression prevention programs in general.7 p

    Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    Get PDF
    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response

    Profile of Central and Effector Memory T Cells in the Progression of Chronic Human Chagas Disease

    Get PDF
    Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi that affects approximately 11 million people in Latin America. The involvement of the host's immune response on the development of severe forms of Chagas disease has not been fully elucidated. Studies on the immune response against T. cruzi infection show that the immunoregulatory mechanisms are necessary to prevent the deleterious effect of excessive immune response stimulation and consequently the fatal outcome of the disease. A recall response against parasite antigens observed in in vitro peripheral blood cell culture clearly demonstrates that memory response is generated during infection. Memory T cells are heterogeneous and differ in both the ability to migrate and exert their effector function. This heterogeneity is reflected in the definition of central (TCM) and effector memory (TEM) T cells. Our results suggest that a balance between regulatory and effectors T cells may be important for the progression and development of the disease. Furthermore, the high percentage of central memory CD4+ T cells in indeterminate patients after stimulation suggests that these cells may modulate host's inflammatory response by controlling cell migration to tissues and their effector role during chronic phase of the disease

    Contradictions in Paradise

    No full text
    corecore