5 research outputs found

    Prenatal hypoxia affects scaling of blood pressure and arterial wall mechanics in the common snapping turtle, Chelydra serpentina

    No full text
    In reptiles, exposure to hypoxia during embryonic development affects several cardiovascular parameters. These modifications may impose different mechanical stress to the arterial system, and we speculated that the arterial wall of major outflow vessels would be modified accordingly. Since non-crocodilian reptiles possess a partially divided ventricle, ensuing similar systemic and pulmonary systolic pressures, we investigated how morphological and mechanical properties of segments from the left aortic arch (LAo) and the proximal and distal segments of the left pulmonary artery (LPAp and LPAd, respectively) change as body mass (M) increases. Eggs from common snapping turtles, Chelydra serpentina, were incubated under normoxia (21% O; N21) or hypoxia (10% O; H10), hatched and maintained in normoxia thereafter. Turtles (0.11-6.85 kg) were cannulated to measure arterial pressures, and an injection of adrenaline was used to increase pressures. Portions of the LAo, LPAp and LPAd were fixed under physiological hydrostatic pressures for histology and mechanical assessment. Arterial pressures increased with M for N21 but not for H10. Although mechanical and functional characteristics from the LPAp and LPAd were similar between N21 and H10, wall thickness from LAo did not change with M in the H10 group, thus wall stress increased in larger turtles. This indicates that larger H10 turtles probably experience an elevated probability of arterial wall rupture without concomitant changes in the cardiovascular system to prevent it. Finally, collagen content of the LPAp and LAo was smaller than in LPAd, suggesting a more distensible arterial wall could attenuate higher pressures from larger turtles

    Baroreflex gain and time of pressure decay at different body temperatures in the tegu lizard, Salvator merianae.

    No full text
    Ectotherms may experience large body temperature (Tb) variations. Higher Tb have been reported to increase baroreflex sensitivity in ectotherm tetrapods. At lower Tb, pulse interval (PI) increases and diastolic pressure decays for longer, possibly resulting in lower end-diastolic pressures and mean arterial pressures (Pm). Additionally, compensatory baroreflex-related heart rate modulation (i.e. the cardiac branch of the baroreflex response) is delayed due to increased PI. Thus, low Tb is potentially detrimental, leading to cardiovascular malfunctioning. This raises the question on how Pm is regulated in such an adverse condition. We investigated the baroreflex compensations that enables tegu lizards, Salvator merianae, to maintain blood pressure homeostasis in a wide Tb range. Lizards had their femoral artery cannulated and pressure signals recorded at 15°C, 25°C and 35°C. We used the sequence method to analyse the heart rate baroreflex-related corrections to spontaneous pressure fluctuations at each temperature. Vascular adjustments (i.e. the peripheral branch) were assessed by calculating the time constant for arterial pressure decay (τ)-resultant from the action of both vascular resistance and compliance-by fitting the diastolic pressure descent to the two-element Windkessel equation. We observed that at lower Tb, lizards increased baroreflex gain at the operating point (Gop) and τ, indicating that the diastolic pressure decays at a slower rate. Gop normalized to Pm and PI, as well as the ratio τ/PI, did not change, indicating that both baroreflex gain and rate of pressure decay are adjusted according to PI lengthening. Consequently, pressure parameters and the oscillatory power fraction (an index of wasted cardiac energy) were unaltered by Tb, indicating that both Gop and τ modulation are crucial for cardiovascular homeostasis

    Analysis of the respiratory component of heart rate variability in the Cururu toad Rhinella schneideri

    No full text
    Abstract Beat-to-beat variation in heart rate (f H ) has been used as a tool for elucidating the balance between sympathetic and parasympathetic modulation of the heart. A portion of the temporal changes in f H is evidenced by a respiratory influence (cardiorespiratory interaction) on heart rate variability (HRV) with heartbeats increasing and decreasing within a respiratory cycle. Nevertheless, little is known about respiratory effects on HRV in lower vertebrates. By using frequency domain analysis, we provide the first evidence of a ventilatory component in HRV similar to mammalian respiratory sinus arrhythmia in an amphibian, the toad Rhinella schneideri. Increases in the heartbeats arose synchronously with each lung inflation cycle, an intermittent breathing pattern comprised of a series of successive lung inflations. A well-marked peak in the HRV signal matching lung inflation cycle was verified in toads whenever lung inflation cycles exhibit a regular rhythm. The cardiac beat-to-beat variation evoked at the moment of lung inflation accounts for both vagal and sympathetic influences. This cardiorespiratory interaction may arise from interactions between central and peripheral feedback mechanisms governing cardiorespiratory control and may underlie important cardiorespiratory adjustments for gas exchange improvement especially under extreme conditions like low oxygen availability

    How many species of Mollusca are there in Brazil? A collective taxonomic effort to reveal this still unknown diversity

    No full text
    The expression ‘you need to know to conserve’ is a well-known cliche among biologists. Documenting the richness of a group of organisms is the first step towards understanding biodiversity and preparing efficient conservation plans. In this context, many efforts have been made to quantify the number of species on Earth and estimate the number of species still unknown to science. A few countries have complete and integrated databases estimating the approximate number of species recorded for their territory, particularly in the Global South. In Brazil, a country of continental dimensions, revealing the richness of the second most diverse clade of invertebrates (=Mollusca) has been a goal of taxonomists. Recently, in an unprecedented, collective, and integrated effort among Brazilian malacologists, it was possible to estimate how many valid species of molluscs are there in Brazil. In this effort, more than 30 mollusc experts joined together to update the Taxonomic Catalogue of the Brazilian Fauna (TCBF), a governmental website that allows a quick and real-time updating of all Metazoan. So far, more than 5,000 updates have been made in TCBF, indicating the presence of 3,552 valid species of molluscs in Brazil, distributed among the main clades as follows: Caudofoveata (10 spp.), Solenogastres (6 spp.), Polyplacophora (35 spp.), Scaphopoda (43 spp.), Cephalopoda (92 spp.), Bivalvia (629 spp.) and Gastropoda (2,737 spp.). The present study, in addition to demonstrating for the first time the richness of Brazilian molluscs, also presents the state of the art of this important phylum of invertebrates highlighting its most representative and neglected groups
    corecore