21 research outputs found

    Size-Specific Magnetic Configurations in Electrodeposited Epitaxial Iron Nanocuboids: From Landau Pattern to Vortex and Single Domain States

    No full text
    International audienceAs the size of magnetic devices continuously decreases, the creation of threedimensional nanomagnets and the understanding of their magnetic configurations become increasingly important for modern applications. Here, by progressive nucleation during epitaxial nano-electrodeposition, we synthesize single-crystal iron nanocuboids with sizes ranging 10 nm to 200 nm on one sample. The size-dependent magnetic configurations of these nanocuboids are studied by quantitative magnetic force microscopy and electron holography. In conjunction, a "magnetic configuration versus size" phase diagram is established via micromagnetic simulations. Both experiment and theory reveal a sequential transition from Landau pattern to vortex and finally single domain when decreasing the nanocuboid size. The combinatorial-like approach leads to a quantitative understanding of the magnetic configurations of the nanomagnets in a broad size range. It can be transferred to other materials and shapes, and thereby presents an advanced route to enrich the material library for future nanodevice design

    Voltage‐Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Sites

    No full text
    High energy efficiency of magnetic devices is crucial for applications such as data storage, computation, and actuation. Redox‐based (magneto‐ionic) voltage control of magnetism is a promising room‐temperature pathway to improve energy efficiency. However, for ferromagnetic metals, the magneto‐ionic effects studied so far require ultrathin films with tunable perpendicular magnetic anisotropy or nanoporous structures for appreciable effects. This paper reports a fully reversible, low voltage‐induced collapse of coercivity and remanence by redox reactions in iron oxide/iron films with uniaxial in‐plane anisotropy. In the initial iron oxide/iron films, NĂ©el wall interactions stabilize a blocked state with high coercivity. During the voltage‐triggered reduction of the iron oxide layer, in situ Kerr microscopy reveals inverse changes of coercivity and anisotropy, and a coarsening of the magnetic microstructure. These results confirm a magneto‐ionic deblocking mechanism, which relies on changes of the NĂ©el wall interactions, and of the microstructural domain‐wall‐pinning sites. With this approach, voltage‐controlled 180° magnetization switching with high energy‐efficiency is achieved. It opens up possibilities for developing magnetic devices programmable by ultralow power and for the reversible tuning of defect‐controlled materials in general
    corecore