424 research outputs found

    PhoSim-NIRCam: Photon-by-photon image simulations of the James Webb Space Telescope's Near-Infrared Camera

    Full text link
    Recent instrumentation projects have allocated resources to develop codes for simulating astronomical images. Novel physics-based models are essential for understanding telescope, instrument, and environmental systematics in observations. A deep understanding of these systematics is especially important in the context of weak gravitational lensing, galaxy morphology, and other sensitive measurements. In this work, we present an adaptation of a physics-based ab initio image simulator: The Photon Simulator (PhoSim). We modify PhoSim for use with the Near-Infrared Camera (NIRCam) -- the primary imaging instrument aboard the James Webb Space Telescope (JWST). This photon Monte Carlo code replicates the observational catalog, telescope and camera optics, detector physics, and readout modes/electronics. Importantly, PhoSim-NIRCam simulates both geometric aberration and diffraction across the field of view. Full field- and wavelength-dependent point spread functions are presented. Simulated images of an extragalactic field are presented. Extensive validation is planned during in-orbit commissioning

    High Spatial Resolution Thermal-Infrared Spectroscopy with ALES: Resolved Spectra of the Benchmark Brown Dwarf Binary HD 130948BC

    Full text link
    We present 2.9-4.1 micron integral field spectroscopy of the L4+L4 brown dwarf binary HD 130948BC, obtained with the Arizona Lenslets for Exoplanet Spectroscopy (ALES) mode of the Large Binocular Telescope Interferometer (LBTI). The HD 130948 system is a hierarchical triple system, in which the G2V primary is joined by two co-orbiting brown dwarfs. By combining the age of the system with the dynamical masses and luminosities of the substellar companions, we can test evolutionary models of cool brown dwarfs and extra-solar giant planets. Previous near-infrared studies suggest a disagreement between HD 130948BC luminosities and those derived from evolutionary models. We obtained spatially-resolved, low-resolution (R~20) L-band spectra of HD 130948B and C to extend the wavelength coverage into the thermal infrared. Jointly using JHK photometry and ALES L-band spectra for HD 130948BC, we derive atmospheric parameters that are consistent with parameters derived from evolutionary models. We leverage the consistency of these atmospheric quantities to favor a younger age (0.50 \pm 0.07 Gyr) of the system compared to the older age (0.79 \pm 0.22 Gyr) determined with gyrochronology in order to address the luminosity discrepancy.Comment: 17 pages, 9 figures, Accepted to Ap

    Hunting for planets in the HL Tau disk

    Get PDF
    Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unstable disk. To test this scenario, we searched for young planets by means of direct imaging in the L'-band using the Large Binocular Telescope Interferometer mid-infrared camera. At the location of two prominent dips in the dust distribution at ~70AU (~0.5") from the central star we reach a contrast level of ~7.5mag. We did not detect any point source at the location of the rings. Using evolutionary models we derive upper limits of ~10-15MJup at <=0.5-1Ma for the possible planets. With these sensitivity limits we should have been able to detect companions sufficiently massive to open full gaps in the disk. The structures detected at mm-wavelengths could be gaps in the distributions of large grains on the disk midplane, caused by planets not massive enough to fully open gaps. Future ALMA observations of the molecular gas density profile and kinematics as well as higher contrast infrared observations may be able to provide a definitive answer.Comment: Accepted for publication on ApJ Letter

    Quiescent H2 Emission From Pre-Main Sequence Stars in Chamaeleon I

    Get PDF
    We report the discovery of quiescent emission from molecular hydrogen gas located in the circumstellar disks of six pre-main sequence stars, including two weak-line T Tauri stars (TTS), and one Herbig AeBe star, in the Chamaeleon I star forming region. For two of these stars, we also place upper limits on the 2->1 S(1)/1->0 S(1) line ratios of 0.4 and 0.5. Of the 11 pre-main sequence sources now known to be sources of quiescent near-infrared hydrogen emission, four possess transitional disks, which suggests that detectable levels of H2_2 emission and the presence of inner disk holes are correlated. These H2_2 detections demonstrate that these inner holes are not completely devoid of gas, in agreement with the presence of observable accretion signatures for all four of these stars and the recent detections of [Ne II] emission from three of them. The overlap in [Ne II] and H2_2 detections hints at a possible correlation between these two features and suggests a shared excitation mechanism of high energy photons. Our models, combined with the kinematic information from the H2_2 lines, locate the bulk of the emitting gas at a few tens of AU from the stars. We also find a correlation between H2_2 detections and those targets which possess the largest Hα\alpha equivalent widths, suggesting a link between accretion activity and quiescent H2_2 emission. We conclude that quiescent H2_2 emission from relatively hot gas within the disks of TTS is most likely related to on-going accretion activity, the production of UV photons and/or X-rays, and the evolutionary status of the dust grain populations in the inner disks.Comment: 12 pages, emulateapj, Accepted by Ap

    The Michigan Infrared Test Thermal ELT N-band (MITTEN) Cryostat

    Full text link
    We introduce the Michigan Infrared Test Thermal ELT N-band (MITTEN) Cryostat, a new facility for testing infrared detectors with a focus on mid-infrared (MIR) wavelengths (8-13 microns). New generations of large format, deep well, fast readout MIR detectors are now becoming available to the astronomical community. As one example, Teledyne Imaging Sensors (TIS) has introduced a long-wave Mercury-Cadmium-Telluride (MCT) array, GeoSnap, with high quantum efficiency (> 65 %) and improved noise properties compared to previous generation Si:As blocked impurity band (BIB) detectors. GeoSnap promises improved sensitivities, and efficiencies, for future background-limited MIR instruments, in particular with future extremely large telescopes (ELTs). We describe our new test facility suitable for measuring characteristics of these detectors, such as read noise, dark current, linearity, gain, pixel operability, quantum efficiency, and point source imaging performance relative to a background scene, as well as multiple point sources of differing contrast. MITTEN has an internal light source, and soon an accompanying filter wheel and aperture plate, reimaged onto the detector using an Offner relay. The baseline temperature of the cryostat interior is maintained < 40 K and the optical bench maintains a temperature of 16 K using a two-stage pulse-tube cryocooler package from Cryomech. No measurable background radiation from the cryostat interior has yet been detected.Comment: 10 pages, 6 figures, To appear in the SPIE Proceedings 'Astronomical Telescopes and Instrumentation' (2020
    • …
    corecore